Mercurial > mplayer.hg
view libaf/filter.c @ 17112:0b6e4b1e2c0d
another 100l, codec-cfg relied on mp_msg printing nothing....
author | ods15 |
---|---|
date | Tue, 06 Dec 2005 12:03:51 +0000 |
parents | de13fd557440 |
children | 36db63e8e5d7 |
line wrap: on
line source
/*============================================================================= // // This software has been released under the terms of the GNU General Public // license. See http://www.gnu.org/copyleft/gpl.html for details. // // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au // //============================================================================= */ /* Design and implementation of different types of digital filters */ #include <string.h> #include <math.h> #include "dsp.h" /****************************************************************************** * FIR filter implementations ******************************************************************************/ /* C implementation of FIR filter y=w*x n number of filter taps, where mod(n,4)==0 w filter taps x input signal must be a circular buffer which is indexed backwards */ inline _ftype_t af_filter_fir(register unsigned int n, _ftype_t* w, _ftype_t* x) { register _ftype_t y; // Output y = 0.0; do{ n--; y+=w[n]*x[n]; }while(n != 0); return y; } /* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution) n number of filter taps, where mod(n,4)==0 d number of filters xi current index in xq w filter taps k by n big x input signal must be a circular buffers which are indexed backwards y output buffer s output buffer stride */ inline _ftype_t* af_filter_pfir(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** w, _ftype_t** x, _ftype_t* y, unsigned int s) { register _ftype_t* xt = *x + xi; register _ftype_t* wt = *w; register int nt = 2*n; while(d-- > 0){ *y = af_filter_fir(n,wt,xt); wt+=n; xt+=nt; y+=s; } return y; } /* Add new data to circular queue designed to be used with a parallel FIR filter, with d filters. xq is the circular queue, in pointing at the new samples, xi current index in xq and n the length of the filter. xq must be n*2 by k big, s is the index for in. */ inline int af_filter_updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** xq, _ftype_t* in, unsigned int s) { register _ftype_t* txq = *xq + xi; register int nt = n*2; while(d-- >0){ *txq= *(txq+n) = *in; txq+=nt; in+=s; } return (++xi)&(n-1); } /****************************************************************************** * FIR filter design ******************************************************************************/ /* Design FIR filter using the Window method n filter length must be odd for HP and BS filters w buffer for the filter taps (must be n long) fc cutoff frequencies (1 for LP and HP, 2 for BP and BS) 0 < fc < 1 where 1 <=> Fs/2 flags window and filter type as defined in filter.h variables are ored together: i.e. LP|HAMMING will give a low pass filter designed using a hamming window opt beta constant used only when designing using kaiser windows returns 0 if OK, -1 if fail */ int af_filter_design_fir(unsigned int n, _ftype_t* w, _ftype_t* fc, unsigned int flags, _ftype_t opt) { unsigned int o = n & 1; // Indicator for odd filter length unsigned int end = ((n + 1) >> 1) - o; // Loop end unsigned int i; // Loop index _ftype_t k1 = 2 * M_PI; // 2*pi*fc1 _ftype_t k2 = 0.5 * (_ftype_t)(1 - o);// Constant used if the filter has even length _ftype_t k3; // 2*pi*fc2 Constant used in BP and BS design _ftype_t g = 0.0; // Gain _ftype_t t1,t2,t3; // Temporary variables _ftype_t fc1,fc2; // Cutoff frequencies // Sanity check if(!w || (n == 0)) return -1; // Get window coefficients switch(flags & WINDOW_MASK){ case(BOXCAR): af_window_boxcar(n,w); break; case(TRIANG): af_window_triang(n,w); break; case(HAMMING): af_window_hamming(n,w); break; case(HANNING): af_window_hanning(n,w); break; case(BLACKMAN): af_window_blackman(n,w); break; case(FLATTOP): af_window_flattop(n,w); break; case(KAISER): af_window_kaiser(n,w,opt); break; default: return -1; } if(flags & (LP | HP)){ fc1=*fc; // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2 fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25; k1 *= fc1; if(flags & LP){ // Low pass filter // If the filter length is odd, there is one point which is exactly // in the middle. The value at this point is 2*fCutoff*sin(x)/x, // where x is zero. To make sure nothing strange happens, we set this // value separately. if (o){ w[end] = fc1 * w[end] * 2.0; g=w[end]; } // Create filter for (i=0 ; i<end ; i++){ t1 = (_ftype_t)(i+1) - k2; w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc g += 2*w[end-i-1]; // Total gain in filter } } else{ // High pass filter if (!o) // High pass filters must have odd length return -1; w[end] = 1.0 - (fc1 * w[end] * 2.0); g= w[end]; // Create filter for (i=0 ; i<end ; i++){ t1 = (_ftype_t)(i+1); w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter } } } if(flags & (BP | BS)){ fc1=fc[0]; fc2=fc[1]; // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2 fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25; fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25; k3 = k1 * fc2; // 2*pi*fc2 k1 *= fc1; // 2*pi*fc1 if(flags & BP){ // Band pass // Calculate center tap if (o){ g=w[end]*(fc1+fc2); w[end] = (fc2 - fc1) * w[end] * 2.0; } // Create filter for (i=0 ; i<end ; i++){ t1 = (_ftype_t)(i+1) - k2; t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2 t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1 g += w[end-i-1] * (t3 + t2); // Total gain in filter w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3); } } else{ // Band stop if (!o) // Band stop filters must have odd length return -1; w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0; g= w[end]; // Create filter for (i=0 ; i<end ; i++){ t1 = (_ftype_t)(i+1); t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1 t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2 w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3); g += 2*w[end-i-1]; // Total gain in filter } } } // Normalize gain g=1/g; for (i=0; i<n; i++) w[i] *= g; return 0; } /* Design polyphase FIR filter from prototype filter n length of prototype filter k number of polyphase components w prototype filter taps pw Parallel FIR filter g Filter gain flags FWD forward indexing REW reverse indexing ODD multiply every 2nd filter tap by -1 => HP filter returns 0 if OK, -1 if fail */ int af_filter_design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _ftype_t g, unsigned int flags) { int l = (int)n/k; // Length of individual FIR filters int i; // Counters int j; _ftype_t t; // g * w[i] // Sanity check if(l<1 || k<1 || !w || !pw) return -1; // Do the stuff if(flags&REW){ for(j=l-1;j>-1;j--){//Columns for(i=0;i<(int)k;i++){//Rows t=g * *w++; pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1); } } } else{ for(j=0;j<l;j++){//Columns for(i=0;i<(int)k;i++){//Rows t=g * *w++; pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? 1 : -1) : 1); } } } return -1; } /****************************************************************************** * IIR filter design ******************************************************************************/ /* Helper functions for the bilinear transform */ /* Pre-warp the coefficients of a numerator or denominator. Note that a0 is assumed to be 1, so there is no wrapping of it. */ void af_filter_prewarp(_ftype_t* a, _ftype_t fc, _ftype_t fs) { _ftype_t wp; wp = 2.0 * fs * tan(M_PI * fc / fs); a[2] = a[2]/(wp * wp); a[1] = a[1]/wp; } /* Transform the numerator and denominator coefficients of s-domain biquad section into corresponding z-domain coefficients. The transfer function for z-domain is: 1 + alpha1 * z^(-1) + alpha2 * z^(-2) H(z) = ------------------------------------- 1 + beta1 * z^(-1) + beta2 * z^(-2) Store the 4 IIR coefficients in array pointed by coef in following order: beta1, beta2 (denominator) alpha1, alpha2 (numerator) Arguments: a - s-domain numerator coefficients b - s-domain denominator coefficients k - filter gain factor. Initially set to 1 and modified by each biquad section in such a way, as to make it the coefficient by which to multiply the overall filter gain in order to achieve a desired overall filter gain, specified in initial value of k. fs - sampling rate (Hz) coef - array of z-domain coefficients to be filled in. Return: On return, set coef z-domain coefficients and k to the gain required to maintain overall gain = 1.0; */ void af_filter_bilinear(_ftype_t* a, _ftype_t* b, _ftype_t* k, _ftype_t fs, _ftype_t *coef) { _ftype_t ad, bd; /* alpha (Numerator in s-domain) */ ad = 4. * a[2] * fs * fs + 2. * a[1] * fs + a[0]; /* beta (Denominator in s-domain) */ bd = 4. * b[2] * fs * fs + 2. * b[1] * fs + b[0]; /* Update gain constant for this section */ *k *= ad/bd; /* Denominator */ *coef++ = (2. * b[0] - 8. * b[2] * fs * fs)/bd; /* beta1 */ *coef++ = (4. * b[2] * fs * fs - 2. * b[1] * fs + b[0])/bd; /* beta2 */ /* Numerator */ *coef++ = (2. * a[0] - 8. * a[2] * fs * fs)/ad; /* alpha1 */ *coef = (4. * a[2] * fs * fs - 2. * a[1] * fs + a[0])/ad; /* alpha2 */ } /* IIR filter design using bilinear transform and prewarp. Transforms 2nd order s domain analog filter into a digital IIR biquad link. To create a filter fill in a, b, Q and fs and make space for coef and k. Example Butterworth design: Below are Butterworth polynomials, arranged as a series of 2nd order sections: Note: n is filter order. n Polynomials ------------------------------------------------------------------- 2 s^2 + 1.4142s + 1 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1) 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1) For n=4 we have following equation for the filter transfer function: 1 1 T(s) = --------------------------- * ---------------------------- s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1 The filter consists of two 2nd order sections since highest s power is 2. Now we can take the coefficients, or the numbers by which s is multiplied and plug them into a standard formula to be used by bilinear transform. Our standard form for each 2nd order section is: a2 * s^2 + a1 * s + a0 H(s) = ---------------------- b2 * s^2 + b1 * s + b0 Note that Butterworth numerator is 1 for all filter sections, which means s^2 = 0 and s^1 = 0 Let's convert standard Butterworth polynomials into this form: 0 + 0 + 1 0 + 0 + 1 --------------------------- * -------------------------- 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1 Section 1: a2 = 0; a1 = 0; a0 = 1; b2 = 1; b1 = 0.765367; b0 = 1; Section 2: a2 = 0; a1 = 0; a0 = 1; b2 = 1; b1 = 1.847759; b0 = 1; Q is filter quality factor or resonance, in the range of 1 to 1000. The overall filter Q is a product of all 2nd order stages. For example, the 6th order filter (3 stages, or biquads) with individual Q of 2 will have filter Q = 2 * 2 * 2 = 8. Arguments: a - s-domain numerator coefficients, a[1] is always assumed to be 1.0 b - s-domain denominator coefficients Q - Q value for the filter k - filter gain factor. Initially set to 1 and modified by each biquad section in such a way, as to make it the coefficient by which to multiply the overall filter gain in order to achieve a desired overall filter gain, specified in initial value of k. fs - sampling rate (Hz) coef - array of z-domain coefficients to be filled in. Note: Upon return from each call, the k argument will be set to a value, by which to multiply our actual signal in order for the gain to be one. On second call to szxform() we provide k that was changed by the previous section. During actual audio filtering k can be used for gain compensation. return -1 if fail 0 if success. */ int af_filter_szxform(_ftype_t* a, _ftype_t* b, _ftype_t Q, _ftype_t fc, _ftype_t fs, _ftype_t *k, _ftype_t *coef) { _ftype_t at[3]; _ftype_t bt[3]; if(!a || !b || !k || !coef || (Q>1000.0 || Q< 1.0)) return -1; memcpy(at,a,3*sizeof(_ftype_t)); memcpy(bt,b,3*sizeof(_ftype_t)); bt[1]/=Q; /* Calculate a and b and overwrite the original values */ af_filter_prewarp(at, fc, fs); af_filter_prewarp(bt, fc, fs); /* Execute bilinear transform */ af_filter_bilinear(at, bt, k, fs, coef); return 0; }