view liba52/srfftp.h @ 1285:202d9e2dc202

-vcodec option (maybe some other name would be better though) to select between driver types without editing codecs.conf. mplayer will default to normal codec search loop if it does not find codec for the specified driver type. config range checking for the parameter (an integer) should be cleaned, IMHO
author lgb
date Fri, 06 Jul 2001 21:17:22 +0000
parents deeaad5bf1d7
children 0410677eda4a
line wrap: on
line source


/* 
 *  srfftp.h
 *
 *  Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000
 *
 *  64 and 128 point split radix fft for ac3dec
 *
 *  The algorithm is desribed in the book:
 *  "Computational Frameworks of the Fast Fourier Transform".
 *
 *  The ideas and the the organization of code borrowed from djbfft written by
 *  D. J. Bernstein <djb@cr.py.to>.  djbff can be found at 
 *  http://cr.yp.to/djbfft.html.
 *
 *  srfftp.h is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2, or (at your option)
 *  any later version.
 *
 *  srfftp.h is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with GNU Make; see the file COPYING.  If not, write to
 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#ifndef SRFFTP_H__
#define SRFFTP_H__

static complex_t delta16[4] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.92387953251129, -0.38268343236509},
   {0.70710678118655, -0.70710678118655},
   {0.38268343236509, -0.92387953251129}};

static complex_t delta16_3[4] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.38268343236509, -0.92387953251129},
   {-0.70710678118655, -0.70710678118655},
   {-0.92387953251129, 0.38268343236509}};

static complex_t delta32[8] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.98078528040323, -0.19509032201613},
   {0.92387953251129, -0.38268343236509},
   {0.83146961230255, -0.55557023301960},
   {0.70710678118655, -0.70710678118655},
   {0.55557023301960, -0.83146961230255},
   {0.38268343236509, -0.92387953251129},
   {0.19509032201613, -0.98078528040323}};

static complex_t delta32_3[8] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.83146961230255, -0.55557023301960},
   {0.38268343236509, -0.92387953251129},
   {-0.19509032201613, -0.98078528040323},
   {-0.70710678118655, -0.70710678118655},
   {-0.98078528040323, -0.19509032201613},
   {-0.92387953251129, 0.38268343236509},
   {-0.55557023301960, 0.83146961230255}};

static complex_t delta64[16] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.99518472667220, -0.09801714032956},
   {0.98078528040323, -0.19509032201613},
   {0.95694033573221, -0.29028467725446},
   {0.92387953251129, -0.38268343236509},
   {0.88192126434836, -0.47139673682600},
   {0.83146961230255, -0.55557023301960},
   {0.77301045336274, -0.63439328416365},
   {0.70710678118655, -0.70710678118655},
   {0.63439328416365, -0.77301045336274},
   {0.55557023301960, -0.83146961230255},
   {0.47139673682600, -0.88192126434835},
   {0.38268343236509, -0.92387953251129},
   {0.29028467725446, -0.95694033573221},
   {0.19509032201613, -0.98078528040323},
   {0.09801714032956, -0.99518472667220}};

static complex_t delta64_3[16] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.95694033573221, -0.29028467725446},
   {0.83146961230255, -0.55557023301960},
   {0.63439328416365, -0.77301045336274},
   {0.38268343236509, -0.92387953251129},
   {0.09801714032956, -0.99518472667220},
   {-0.19509032201613, -0.98078528040323},
   {-0.47139673682600, -0.88192126434836},
   {-0.70710678118655, -0.70710678118655},
   {-0.88192126434835, -0.47139673682600},
   {-0.98078528040323, -0.19509032201613},
   {-0.99518472667220, 0.09801714032956},
   {-0.92387953251129, 0.38268343236509},
   {-0.77301045336274, 0.63439328416365},
   {-0.55557023301960, 0.83146961230255},
   {-0.29028467725446, 0.95694033573221}};

static complex_t delta128[32] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.99879545620517, -0.04906767432742},
   {0.99518472667220, -0.09801714032956},
   {0.98917650996478, -0.14673047445536},
   {0.98078528040323, -0.19509032201613},
   {0.97003125319454, -0.24298017990326},
   {0.95694033573221, -0.29028467725446},
   {0.94154406518302, -0.33688985339222},
   {0.92387953251129, -0.38268343236509},
   {0.90398929312344, -0.42755509343028},
   {0.88192126434836, -0.47139673682600},
   {0.85772861000027, -0.51410274419322},
   {0.83146961230255, -0.55557023301960},
   {0.80320753148064, -0.59569930449243},
   {0.77301045336274, -0.63439328416365},
   {0.74095112535496, -0.67155895484702},
   {0.70710678118655, -0.70710678118655},
   {0.67155895484702, -0.74095112535496},
   {0.63439328416365, -0.77301045336274},
   {0.59569930449243, -0.80320753148064},
   {0.55557023301960, -0.83146961230255},
   {0.51410274419322, -0.85772861000027},
   {0.47139673682600, -0.88192126434835},
   {0.42755509343028, -0.90398929312344},
   {0.38268343236509, -0.92387953251129},
   {0.33688985339222, -0.94154406518302},
   {0.29028467725446, -0.95694033573221},
   {0.24298017990326, -0.97003125319454},
   {0.19509032201613, -0.98078528040323},
   {0.14673047445536, -0.98917650996478},
   {0.09801714032956, -0.99518472667220},
   {0.04906767432742, -0.99879545620517}};

static complex_t delta128_3[32] __attribute__((aligned(16))) = 
 { {1.00000000000000,  0.00000000000000},
   {0.98917650996478, -0.14673047445536},
   {0.95694033573221, -0.29028467725446},
   {0.90398929312344, -0.42755509343028},
   {0.83146961230255, -0.55557023301960},
   {0.74095112535496, -0.67155895484702},
   {0.63439328416365, -0.77301045336274},
   {0.51410274419322, -0.85772861000027},
   {0.38268343236509, -0.92387953251129},
   {0.24298017990326, -0.97003125319454},
   {0.09801714032956, -0.99518472667220},
   {-0.04906767432742, -0.99879545620517},
   {-0.19509032201613, -0.98078528040323},
   {-0.33688985339222, -0.94154406518302},
   {-0.47139673682600, -0.88192126434836},
   {-0.59569930449243, -0.80320753148065},
   {-0.70710678118655, -0.70710678118655},
   {-0.80320753148065, -0.59569930449243},
   {-0.88192126434835, -0.47139673682600},
   {-0.94154406518302, -0.33688985339222},
   {-0.98078528040323, -0.19509032201613},
   {-0.99879545620517, -0.04906767432742},
   {-0.99518472667220, 0.09801714032956},
   {-0.97003125319454, 0.24298017990326},
   {-0.92387953251129, 0.38268343236509},
   {-0.85772861000027, 0.51410274419322},
   {-0.77301045336274, 0.63439328416365},
   {-0.67155895484702, 0.74095112535496},
   {-0.55557023301960, 0.83146961230255},
   {-0.42755509343028, 0.90398929312344},
   {-0.29028467725446, 0.95694033573221},
   {-0.14673047445536, 0.98917650996478}};

#define HSQRT2 0.707106781188;

#define TRANSZERO(A0,A4,A8,A12) { \
  u_r = wTB[0].re; \
  v_i = u_r - wTB[k*2].re; \
  u_r += wTB[k*2].re; \
  u_i = wTB[0].im; \
  v_r = wTB[k*2].im - u_i; \
  u_i += wTB[k*2].im; \
  a_r = A0.re; \
  a_i = A0.im; \
  a1_r = a_r; \
  a1_r += u_r; \
  A0.re = a1_r; \
  a_r -= u_r; \
  A8.re = a_r; \
  a1_i = a_i; \
  a1_i += u_i; \
  A0.im = a1_i; \
  a_i -= u_i; \
  A8.im = a_i; \
  a1_r = A4.re; \
  a1_i = A4.im; \
  a_r = a1_r; \
  a_r -= v_r; \
  A4.re = a_r; \
  a1_r += v_r; \
  A12.re = a1_r; \
  a_i = a1_i; \
  a_i -= v_i; \
  A4.im = a_i; \
  a1_i += v_i; \
  A12.im = a1_i; \
  }

#define TRANSHALF_16(A2,A6,A10,A14) {\
  u_r = wTB[2].re; \
  a_r = u_r; \
  u_i = wTB[2].im; \
  u_r += u_i; \
  u_i -= a_r; \
  a_r = wTB[6].re; \
  a1_r = a_r; \
  a_i = wTB[6].im; \
  a_r = a_i - a_r; \
  a_i += a1_r; \
  v_i = u_r - a_r; \
  u_r += a_r; \
  v_r = u_i + a_i; \
  u_i -= a_i; \
  v_i *= HSQRT2; \
  v_r *= HSQRT2; \
  u_r *= HSQRT2; \
  u_i *= HSQRT2; \
  a_r = A2.re; \
  a_i = A2.im; \
  a1_r = a_r; \
  a1_r += u_r; \
  A2.re = a1_r; \
  a_r -= u_r; \
  A10.re = a_r; \
  a1_i = a_i; \
  a1_i += u_i; \
  A2.im = a1_i; \
  a_i -= u_i; \
  A10.im = a_i; \
  a1_r = A6.re; \
  a1_i = A6.im;  \
  a_r = a1_r; \
  a1_r += v_r; \
  A6.re = a1_r; \
  a_r -= v_r; \
  A14.re = a_r; \
  a_i = a1_i; \
  a1_i -= v_i; \
  A6.im = a1_i; \
  a_i += v_i; \
  A14.im = a_i; \
  }

#define TRANS(A1,A5,A9,A13,WT,WB,D,D3) { \
  u_r = WT.re; \
  a_r = u_r; \
  a_r *= D.im; \
  u_r *= D.re; \
  a_i = WT.im; \
  a1_i = a_i; \
  a1_i *= D.re; \
  a_i *= D.im; \
  u_r -= a_i; \
  u_i = a_r; \
  u_i += a1_i; \
  a_r = WB.re; \
  a1_r = a_r; \
  a1_r *= D3.re; \
  a_r *= D3.im; \
  a_i = WB.im; \
  a1_i = a_i; \
  a_i *= D3.re; \
  a1_i *= D3.im; \
  a1_r -= a1_i; \
  a_r += a_i; \
  v_i = u_r - a1_r; \
  u_r += a1_r; \
  v_r = a_r - u_i; \
  u_i += a_r; \
  a_r = A1.re; \
  a_i = A1.im; \
  a1_r = a_r; \
  a1_r += u_r; \
  A1.re = a1_r; \
  a_r -= u_r; \
  A9.re = a_r; \
  a1_i = a_i; \
  a1_i += u_i; \
  A1.im = a1_i; \
  a_i -= u_i; \
  A9.im = a_i; \
  a1_r = A5.re; \
  a1_i = A5.im;  \
  a_r = a1_r; \
  a1_r -= v_r; \
  A5.re = a1_r; \
  a_r += v_r; \
  A13.re = a_r; \
  a_i = a1_i; \
  a1_i -= v_i; \
  A5.im = a1_i; \
  a_i += v_i; \
  A13.im = a_i; \
  }

#endif