Mercurial > mplayer.hg
view libfaad2/mdct.c @ 13144:29a48ea224e8
properly set linking flags for NetBSD, patch by jb13@gomerbud.com
author | diego |
---|---|
date | Thu, 26 Aug 2004 01:06:02 +0000 |
parents | d81145997036 |
children | 6d50ef45a058 |
line wrap: on
line source
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** Initially modified for use with MPlayer by Arpad Gereöffy on 2003/08/30 ** $Id: mdct.c,v 1.3 2004/06/02 22:59:03 diego Exp $ ** detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/ **/ /* * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform) * and consists of three steps: pre-(I)FFT complex multiplication, complex * (I)FFT, post-(I)FFT complex multiplication, * * As described in: * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the * Implementation of Filter Banks Based on 'Time Domain Aliasing * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212. * * * As of April 6th 2002 completely rewritten. * This (I)MDCT can now be used for any data size n, where n is divisible by 8. * */ #include "common.h" #include "structs.h" #include <stdlib.h> #ifdef _WIN32_WCE #define assert(x) #else #include <assert.h> #endif #include "cfft.h" #include "mdct.h" /* const_tab[]: 0: sqrt(2 / N) 1: cos(2 * PI / N) 2: sin(2 * PI / N) 3: cos(2 * PI * (1/8) / N) 4: sin(2 * PI * (1/8) / N) */ #ifdef FIXED_POINT real_t const_tab[][5] = { { /* 2048 */ COEF_CONST(1), FRAC_CONST(0.99999529380957619), FRAC_CONST(0.0030679567629659761), FRAC_CONST(0.99999992646571789), FRAC_CONST(0.00038349518757139556) }, { /* 1920 */ COEF_CONST(/* sqrt(1024/960) */ 1.0327955589886444), FRAC_CONST(0.99999464540169647), FRAC_CONST(0.0032724865065266251), FRAC_CONST(0.99999991633432805), FRAC_CONST(0.00040906153202803459) }, { /* 1024 */ COEF_CONST(1), FRAC_CONST(0.99998117528260111), FRAC_CONST(0.0061358846491544753), FRAC_CONST(0.99999970586288223), FRAC_CONST(0.00076699031874270449) }, { /* 960 */ COEF_CONST(/* sqrt(512/480) */ 1.0327955589886444), FRAC_CONST(0.99997858166412923), FRAC_CONST(0.0065449379673518581), FRAC_CONST(0.99999966533732598), FRAC_CONST(0.00081812299560725323) }, { /* 256 */ COEF_CONST(1), FRAC_CONST(0.99969881869620425), FRAC_CONST(0.024541228522912288), FRAC_CONST(0.99999529380957619), FRAC_CONST(0.0030679567629659761) }, { /* 240 */ COEF_CONST(/* sqrt(256/240) */ 1.0327955589886444), FRAC_CONST(0.99965732497555726), FRAC_CONST(0.026176948307873149), FRAC_CONST(0.99999464540169647), FRAC_CONST(0.0032724865065266251) } #ifdef SSR_DEC ,{ /* 512 */ COEF_CONST(1), FRAC_CONST(0.9999247018391445), FRAC_CONST(0.012271538285719925), FRAC_CONST(0.99999882345170188), FRAC_CONST(0.0015339801862847655) }, { /* 64 */ COEF_CONST(1), FRAC_CONST(0.99518472667219693), FRAC_CONST(0.098017140329560604), FRAC_CONST(0.9999247018391445), FRAC_CONST(0.012271538285719925) } #endif }; #endif #ifdef FIXED_POINT static uint8_t map_N_to_idx(uint16_t N) { /* gives an index into const_tab above */ /* for normal AAC deocding (eg. no scalable profile) only */ /* index 0 and 4 will be used */ switch(N) { case 2048: return 0; case 1920: return 1; case 1024: return 2; case 960: return 3; case 256: return 4; case 240: return 5; #ifdef SSR_DEC case 512: return 6; case 64: return 7; #endif } return 0; } #endif mdct_info *faad_mdct_init(uint16_t N) { uint16_t k; #ifdef FIXED_POINT uint16_t N_idx; real_t cangle, sangle, c, s, cold; #endif real_t scale; mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info)); assert(N % 8 == 0); mdct->N = N; mdct->sincos = (complex_t*)faad_malloc(N/4*sizeof(complex_t)); #ifdef FIXED_POINT N_idx = map_N_to_idx(N); scale = const_tab[N_idx][0]; cangle = const_tab[N_idx][1]; sangle = const_tab[N_idx][2]; c = const_tab[N_idx][3]; s = const_tab[N_idx][4]; #else scale = (real_t)sqrt(2.0 / (real_t)N); #endif /* (co)sine table build using recurrence relations */ /* this can also be done using static table lookup or */ /* some form of interpolation */ for (k = 0; k < N/4; k++) { #ifdef FIXED_POINT RE(mdct->sincos[k]) = c; //MUL_C_C(c,scale); IM(mdct->sincos[k]) = s; //MUL_C_C(s,scale); cold = c; c = MUL_F(c,cangle) - MUL_F(s,sangle); s = MUL_F(s,cangle) + MUL_F(cold,sangle); #else /* no recurrence, just sines */ RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N)); IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); #endif } /* initialise fft */ mdct->cfft = cffti(N/4); #ifdef PROFILE mdct->cycles = 0; mdct->fft_cycles = 0; #endif return mdct; } void faad_mdct_end(mdct_info *mdct) { if (mdct != NULL) { #ifdef PROFILE printf("MDCT[%.4d]: %I64d cycles\n", mdct->N, mdct->cycles); printf("CFFT[%.4d]: %I64d cycles\n", mdct->N/4, mdct->fft_cycles); #endif cfftu(mdct->cfft); if (mdct->sincos) faad_free(mdct->sincos); faad_free(mdct); } } void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; complex_t x; ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifdef PROFILE int64_t count1, count2 = faad_get_ts(); #endif /* pre-IFFT complex multiplication */ for (k = 0; k < N4; k++) { ComplexMult(&IM(Z1[k]), &RE(Z1[k]), X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k])); } #ifdef PROFILE count1 = faad_get_ts(); #endif /* complex IFFT, any non-scaling FFT can be used here */ cfftb(mdct->cfft, Z1); #ifdef PROFILE count1 = faad_get_ts() - count1; #endif /* post-IFFT complex multiplication */ for (k = 0; k < N4; k++) { RE(x) = RE(Z1[k]); IM(x) = IM(Z1[k]); ComplexMult(&IM(Z1[k]), &RE(Z1[k]), IM(x), RE(x), RE(sincos[k]), IM(sincos[k])); } /* reordering */ for (k = 0; k < N8; k+=2) { X_out[ 2*k] = IM(Z1[N8 + k]); X_out[ 2 + 2*k] = IM(Z1[N8 + 1 + k]); X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]); X_out[ 3 + 2*k] = -RE(Z1[N8 - 2 - k]); X_out[N4 + 2*k] = RE(Z1[ k]); X_out[N4 + + 2 + 2*k] = RE(Z1[ 1 + k]); X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]); X_out[N4 + 3 + 2*k] = -IM(Z1[N4 - 2 - k]); X_out[N2 + 2*k] = RE(Z1[N8 + k]); X_out[N2 + + 2 + 2*k] = RE(Z1[N8 + 1 + k]); X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]); X_out[N2 + 3 + 2*k] = -IM(Z1[N8 - 2 - k]); X_out[N2 + N4 + 2*k] = -IM(Z1[ k]); X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[ 1 + k]); X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]); X_out[N2 + N4 + 3 + 2*k] = RE(Z1[N4 - 2 - k]); } #ifdef PROFILE count2 = faad_get_ts() - count2; mdct->fft_cycles += count1; mdct->cycles += (count2 - count1); #endif } #ifdef USE_SSE void faad_imdct_sse(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifdef PROFILE int64_t count1, count2 = faad_get_ts(); #endif /* pre-IFFT complex multiplication */ for (k = 0; k < N4; k+=4) { __m128 m12, m13, m14, m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11; __m128 n12, n13, n14, n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11; n12 = _mm_load_ps(&X_in[N2 - 2*k - 8]); m12 = _mm_load_ps(&X_in[N2 - 2*k - 4]); m13 = _mm_load_ps(&X_in[2*k]); n13 = _mm_load_ps(&X_in[2*k + 4]); m1 = _mm_load_ps(&RE(sincos[k])); n1 = _mm_load_ps(&RE(sincos[k+2])); m0 = _mm_shuffle_ps(m12, m13, _MM_SHUFFLE(2,0,1,3)); m2 = _mm_shuffle_ps(m1, m1, _MM_SHUFFLE(2,3,0,1)); m14 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(3,1,2,0)); n0 = _mm_shuffle_ps(n12, n13, _MM_SHUFFLE(2,0,1,3)); n2 = _mm_shuffle_ps(n1, n1, _MM_SHUFFLE(2,3,0,1)); n14 = _mm_shuffle_ps(n0, n0, _MM_SHUFFLE(3,1,2,0)); m3 = _mm_mul_ps(m14, m1); n3 = _mm_mul_ps(n14, n1); m4 = _mm_mul_ps(m14, m2); n4 = _mm_mul_ps(n14, n2); m5 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(2,0,2,0)); n5 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(2,0,2,0)); m6 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(3,1,3,1)); n6 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(3,1,3,1)); m7 = _mm_add_ps(m5, m6); n7 = _mm_add_ps(n5, n6); m8 = _mm_sub_ps(m5, m6); n8 = _mm_sub_ps(n5, n6); m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(3,2,3,2)); n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(3,2,3,2)); m10 = _mm_shuffle_ps(m8, m8, _MM_SHUFFLE(1,0,1,0)); n10 = _mm_shuffle_ps(n8, n8, _MM_SHUFFLE(1,0,1,0)); m11 = _mm_unpacklo_ps(m10, m9); n11 = _mm_unpacklo_ps(n10, n9); _mm_store_ps(&RE(Z1[k]), m11); _mm_store_ps(&RE(Z1[k+2]), n11); } #ifdef PROFILE count1 = faad_get_ts(); #endif /* complex IFFT, any non-scaling FFT can be used here */ cfftb_sse(mdct->cfft, Z1); #ifdef PROFILE count1 = faad_get_ts() - count1; #endif /* post-IFFT complex multiplication */ for (k = 0; k < N4; k+=4) { __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11; __m128 n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11; m0 = _mm_load_ps(&RE(Z1[k])); n0 = _mm_load_ps(&RE(Z1[k+2])); m1 = _mm_load_ps(&RE(sincos[k])); n1 = _mm_load_ps(&RE(sincos[k+2])); m2 = _mm_shuffle_ps(m1, m1, _MM_SHUFFLE(2,3,0,1)); n2 = _mm_shuffle_ps(n1, n1, _MM_SHUFFLE(2,3,0,1)); m3 = _mm_mul_ps(m0, m1); n3 = _mm_mul_ps(n0, n1); m4 = _mm_mul_ps(m0, m2); n4 = _mm_mul_ps(n0, n2); m5 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(2,0,2,0)); n5 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(2,0,2,0)); m6 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(3,1,3,1)); n6 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(3,1,3,1)); m7 = _mm_add_ps(m5, m6); n7 = _mm_add_ps(n5, n6); m8 = _mm_sub_ps(m5, m6); n8 = _mm_sub_ps(n5, n6); m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(3,2,3,2)); n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(3,2,3,2)); m10 = _mm_shuffle_ps(m8, m8, _MM_SHUFFLE(1,0,1,0)); n10 = _mm_shuffle_ps(n8, n8, _MM_SHUFFLE(1,0,1,0)); m11 = _mm_unpacklo_ps(m10, m9); n11 = _mm_unpacklo_ps(n10, n9); _mm_store_ps(&RE(Z1[k]), m11); _mm_store_ps(&RE(Z1[k+2]), n11); } /* reordering */ for (k = 0; k < N8; k+=2) { __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m13; __m128 n4, n5, n6, n7, n8, n9; __m128 neg1 = _mm_set_ps(-1.0, 1.0, -1.0, 1.0); __m128 neg2 = _mm_set_ps(-1.0, -1.0, -1.0, -1.0); m0 = _mm_load_ps(&RE(Z1[k])); m1 = _mm_load_ps(&RE(Z1[N8 - 2 - k])); m2 = _mm_load_ps(&RE(Z1[N8 + k])); m3 = _mm_load_ps(&RE(Z1[N4 - 2 - k])); m10 = _mm_mul_ps(m0, neg1); m11 = _mm_mul_ps(m1, neg2); m13 = _mm_mul_ps(m3, neg1); m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(3,1,2,0)); n4 = _mm_shuffle_ps(m10, m10, _MM_SHUFFLE(3,1,2,0)); m4 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(3,1,2,0)); n5 = _mm_shuffle_ps(m13, m13, _MM_SHUFFLE(3,1,2,0)); m6 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(3,2,1,0)); n6 = _mm_shuffle_ps(n4, n5, _MM_SHUFFLE(3,2,1,0)); m7 = _mm_shuffle_ps(m5, m4, _MM_SHUFFLE(3,2,1,0)); n7 = _mm_shuffle_ps(n5, n4, _MM_SHUFFLE(3,2,1,0)); m8 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0,3,1,2)); n8 = _mm_shuffle_ps(n6, n6, _MM_SHUFFLE(2,1,3,0)); m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(2,1,3,0)); n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(0,3,1,2)); _mm_store_ps(&X_out[2*k], m8); _mm_store_ps(&X_out[N4 + 2*k], n8); _mm_store_ps(&X_out[N2 + 2*k], m9); _mm_store_ps(&X_out[N2 + N4 + 2*k], n9); } #ifdef PROFILE count2 = faad_get_ts() - count2; mdct->fft_cycles += count1; mdct->cycles += (count2 - count1); #endif } #endif #ifdef LTP_DEC void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; complex_t x; ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifndef FIXED_POINT real_t scale = REAL_CONST(N); #else real_t scale = REAL_CONST(4.0/N); #endif /* pre-FFT complex multiplication */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n]; ComplexMult(&RE(Z1[k]), &IM(Z1[k]), RE(x), IM(x), RE(sincos[k]), IM(sincos[k])); RE(Z1[k]) = MUL_R(RE(Z1[k]), scale); IM(Z1[k]) = MUL_R(IM(Z1[k]), scale); RE(x) = X_in[N2 - 1 - n] - X_in[ n]; IM(x) = X_in[N2 + n] + X_in[N - 1 - n]; ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]), RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8])); RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale); IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale); } /* complex FFT, any non-scaling FFT can be used here */ cfftf(mdct->cfft, Z1); /* post-FFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; ComplexMult(&RE(x), &IM(x), RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k])); X_out[ n] = -RE(x); X_out[N2 - 1 - n] = IM(x); X_out[N2 + n] = -IM(x); X_out[N - 1 - n] = RE(x); } } #endif