view libfaad2/cfft.c @ 30857:77ce62f13d42

Use the high-level QuickTime decoding APIs (DecompressSequenceFrameS and friends) instead of the unsupported, internal ones (ImageCodecBeginBand etc.). This is a prerequisite for, among others, Apple ProRes 4:2:2 support, and simplifies the file by quite a bit. Tested on Linux with all existing QuickTime codecs I could get to work in the first place; qt261, qtavui, qtsvq3 have no change. qtcvid appears to not give bit-exact the same output as before, but it looks just the same in playback to me. qt3ivx stops crashing on exit (so works better than before). With some extra patches and a codecs.conf entry, ProRes 4:2:2 also works, including on Linux. Since codec initialization is now actually done on decoder init instead of on first frame, fallback should also work a bit better (although usually, qtvideo is last in the chain). Also made the decoder complain explicitly if the demuxer data is not there (ie., the user tried to run without -demuxer mov). This patch is a cleaned up version of what Andrew Wason (rectalogic A rectalogic D com) posted to mplayer-dev-eng in June.
author sesse
date Mon, 15 Mar 2010 12:05:56 +0000
parents 59b6fa5b4201
children
line wrap: on
line source

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: cfft.c,v 1.30 2004/09/08 09:43:11 gcp Exp $
**/

/*
 * Algorithmically based on Fortran-77 FFTPACK
 * by Paul N. Swarztrauber(Version 4, 1985).
 *
 * Does even sized fft only
 */

/* isign is +1 for backward and -1 for forward transforms */

#include "common.h"
#include "structs.h"

#include <stdlib.h>

#include "cfft.h"
#include "cfft_tab.h"


/* static function declarations */
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa);
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa);
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                   complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign);
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
                      const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
                      const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
                   const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
                   const complex_t *wa4, const int8_t isign);
INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,
                   const uint16_t *ifac, const complex_t *wa, const int8_t isign);
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac);


/*----------------------------------------------------------------------
   passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
  ----------------------------------------------------------------------*/

static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa)
{
    uint16_t i, k, ah, ac;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            ah = 2*k;
            ac = 4*k;

            RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);
            RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
            IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);
            IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ah = k*ido;
            ac = 2*k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t t2;

                RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
                RE(t2)       = RE(cc[ac+i]) - RE(cc[ac+i+ido]);

                IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
                IM(t2)       = IM(cc[ac+i]) - IM(cc[ac+i+ido]);

#if 1
                ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
                    IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
#else
                ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
                    RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
#endif
            }
        }
    }
}

static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa)
{
    uint16_t i, k, ah, ac;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            ah = 2*k;
            ac = 4*k;

            RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);
            RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
            IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);
            IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ah = k*ido;
            ac = 2*k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t t2;

                RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
                RE(t2)       = RE(cc[ac+i]) - RE(cc[ac+i+ido]);

                IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
                IM(t2)       = IM(cc[ac+i]) - IM(cc[ac+i+ido]);

#if 1
                ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
                    RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
#else
                ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
                    IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
#endif
            }
        }
    }
}


static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                   complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                   const int8_t isign)
{
    static real_t taur = FRAC_CONST(-0.5);
    static real_t taui = FRAC_CONST(0.866025403784439);
    uint16_t i, k, ac, ah;
    complex_t c2, c3, d2, d3, t2;

    if (ido == 1)
    {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                ac = 3*k+1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);

                RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
                IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);

                RE(ch[ah+l1]) = RE(c2) - IM(c3);
                IM(ch[ah+l1]) = IM(c2) + RE(c3);
                RE(ch[ah+2*l1]) = RE(c2) + IM(c3);
                IM(ch[ah+2*l1]) = IM(c2) - RE(c3);
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                ac = 3*k+1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);

                RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
                IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);

                RE(ch[ah+l1]) = RE(c2) + IM(c3);
                IM(ch[ah+l1]) = IM(c2) - RE(c3);
                RE(ch[ah+2*l1]) = RE(c2) - IM(c3);
                IM(ch[ah+2*l1]) = IM(c2) + RE(c3);
            }
        }
    } else {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (3*k+1)*ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);

                    RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
                    IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);

                    RE(d2) = RE(c2) - IM(c3);
                    IM(d3) = IM(c2) - RE(c3);
                    RE(d3) = RE(c2) + IM(c3);
                    IM(d2) = IM(c2) + RE(c3);

#if 1
                    ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
                        IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
                        IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
#else
                    ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
                        RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
                        RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
#endif
                }
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (3*k+1)*ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);

                    RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
                    IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);

                    RE(d2) = RE(c2) + IM(c3);
                    IM(d3) = IM(c2) + RE(c3);
                    RE(d3) = RE(c2) - IM(c3);
                    IM(d2) = IM(c2) - RE(c3);

#if 1
                    ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
                        RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
                        RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
#else
                    ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
                        IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
                        IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
#endif
                }
            }
        }
    }
}


static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                      const complex_t *wa3)
{
    uint16_t i, k, ac, ah;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            complex_t t1, t2, t3, t4;

            ac = 4*k;
            ah = k;

            RE(t2) = RE(cc[ac])   + RE(cc[ac+2]);
            RE(t1) = RE(cc[ac])   - RE(cc[ac+2]);
            IM(t2) = IM(cc[ac])   + IM(cc[ac+2]);
            IM(t1) = IM(cc[ac])   - IM(cc[ac+2]);
            RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
            IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
            IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
            RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);

            RE(ch[ah])      = RE(t2) + RE(t3);
            RE(ch[ah+2*l1]) = RE(t2) - RE(t3);

            IM(ch[ah])      = IM(t2) + IM(t3);
            IM(ch[ah+2*l1]) = IM(t2) - IM(t3);

            RE(ch[ah+l1])   = RE(t1) + RE(t4);
            RE(ch[ah+3*l1]) = RE(t1) - RE(t4);

            IM(ch[ah+l1])   = IM(t1) + IM(t4);
            IM(ch[ah+3*l1]) = IM(t1) - IM(t4);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ac = 4*k*ido;
            ah = k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t c2, c3, c4, t1, t2, t3, t4;

                RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
                RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
                IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
                IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
                RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
                IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
                IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
                RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);

                RE(c2) = RE(t1) + RE(t4);
                RE(c4) = RE(t1) - RE(t4);

                IM(c2) = IM(t1) + IM(t4);
                IM(c4) = IM(t1) - IM(t4);

                RE(ch[ah+i]) = RE(t2) + RE(t3);
                RE(c3)       = RE(t2) - RE(t3);

                IM(ch[ah+i]) = IM(t2) + IM(t3);
                IM(c3)       = IM(t2) - IM(t3);

#if 1
                ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
                    IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
                ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
                    IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
                ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
                    IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
#else
                ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
                    RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
                ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
                    RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
                ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
                    RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
#endif
            }
        }
    }
}

static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                      const complex_t *wa3)
{
    uint16_t i, k, ac, ah;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            complex_t t1, t2, t3, t4;

            ac = 4*k;
            ah = k;

            RE(t2) = RE(cc[ac])   + RE(cc[ac+2]);
            RE(t1) = RE(cc[ac])   - RE(cc[ac+2]);
            IM(t2) = IM(cc[ac])   + IM(cc[ac+2]);
            IM(t1) = IM(cc[ac])   - IM(cc[ac+2]);
            RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
            IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
            IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
            RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);

            RE(ch[ah])      = RE(t2) + RE(t3);
            RE(ch[ah+2*l1]) = RE(t2) - RE(t3);

            IM(ch[ah])      = IM(t2) + IM(t3);
            IM(ch[ah+2*l1]) = IM(t2) - IM(t3);

            RE(ch[ah+l1])   = RE(t1) - RE(t4);
            RE(ch[ah+3*l1]) = RE(t1) + RE(t4);

            IM(ch[ah+l1])   = IM(t1) - IM(t4);
            IM(ch[ah+3*l1]) = IM(t1) + IM(t4);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ac = 4*k*ido;
            ah = k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t c2, c3, c4, t1, t2, t3, t4;

                RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
                RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
                IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
                IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
                RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
                IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
                IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
                RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);

                RE(c2) = RE(t1) - RE(t4);
                RE(c4) = RE(t1) + RE(t4);

                IM(c2) = IM(t1) - IM(t4);
                IM(c4) = IM(t1) + IM(t4);

                RE(ch[ah+i]) = RE(t2) + RE(t3);
                RE(c3)       = RE(t2) - RE(t3);

                IM(ch[ah+i]) = IM(t2) + IM(t3);
                IM(c3)       = IM(t2) - IM(t3);

#if 1
                ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
                    RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
                ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
                    RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
                ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
                    RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
#else
                ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
                    IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
                ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
                    IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
                ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
                    IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
#endif
            }
        }
    }
}

static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                   complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
                   const complex_t *wa4, const int8_t isign)
{
    static real_t tr11 = FRAC_CONST(0.309016994374947);
    static real_t ti11 = FRAC_CONST(0.951056516295154);
    static real_t tr12 = FRAC_CONST(-0.809016994374947);
    static real_t ti12 = FRAC_CONST(0.587785252292473);
    uint16_t i, k, ac, ah;
    complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;

    if (ido == 1)
    {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                ac = 5*k + 1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
                RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
                IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
                RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
                IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
                RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
                IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);

                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                ComplexMult(&RE(c5), &RE(c4),
                    ti11, ti12, RE(t5), RE(t4));
                ComplexMult(&IM(c5), &IM(c4),
                    ti11, ti12, IM(t5), IM(t4));

                RE(ch[ah+l1]) = RE(c2) - IM(c5);
                IM(ch[ah+l1]) = IM(c2) + RE(c5);
                RE(ch[ah+2*l1]) = RE(c3) - IM(c4);
                IM(ch[ah+2*l1]) = IM(c3) + RE(c4);
                RE(ch[ah+3*l1]) = RE(c3) + IM(c4);
                IM(ch[ah+3*l1]) = IM(c3) - RE(c4);
                RE(ch[ah+4*l1]) = RE(c2) + IM(c5);
                IM(ch[ah+4*l1]) = IM(c2) - RE(c5);
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                ac = 5*k + 1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
                RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
                IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
                RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
                IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
                RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
                IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);

                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                ComplexMult(&RE(c4), &RE(c5),
                    ti12, ti11, RE(t5), RE(t4));
                ComplexMult(&IM(c4), &IM(c5),
                    ti12, ti12, IM(t5), IM(t4));

                RE(ch[ah+l1]) = RE(c2) + IM(c5);
                IM(ch[ah+l1]) = IM(c2) - RE(c5);
                RE(ch[ah+2*l1]) = RE(c3) + IM(c4);
                IM(ch[ah+2*l1]) = IM(c3) - RE(c4);
                RE(ch[ah+3*l1]) = RE(c3) - IM(c4);
                IM(ch[ah+3*l1]) = IM(c3) + RE(c4);
                RE(ch[ah+4*l1]) = RE(c2) - IM(c5);
                IM(ch[ah+4*l1]) = IM(c2) + RE(c5);
            }
        }
    } else {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (k*5 + 1) * ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
                    RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
                    IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
                    RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
                    IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
                    RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
                    IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);

                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                    RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                    IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                    ComplexMult(&RE(c5), &RE(c4),
                        ti11, ti12, RE(t5), RE(t4));
                    ComplexMult(&IM(c5), &IM(c4),
                        ti11, ti12, IM(t5), IM(t4));

                    IM(d2) = IM(c2) + RE(c5);
                    IM(d3) = IM(c3) + RE(c4);
                    RE(d4) = RE(c3) + IM(c4);
                    RE(d5) = RE(c2) + IM(c5);
                    RE(d2) = RE(c2) - IM(c5);
                    IM(d5) = IM(c2) - RE(c5);
                    RE(d3) = RE(c3) - IM(c4);
                    IM(d4) = IM(c3) - RE(c4);

#if 1
                    ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
                        IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
                        IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
                    ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
                        IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
                    ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
                        IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
#else
                    ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
                        RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
                        RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
                    ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
                        RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
                    ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
                        RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
#endif
                }
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (k*5 + 1) * ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
                    RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
                    IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
                    RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
                    IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
                    RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
                    IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);

                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                    RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                    IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                    ComplexMult(&RE(c4), &RE(c5),
                        ti12, ti11, RE(t5), RE(t4));
                    ComplexMult(&IM(c4), &IM(c5),
                        ti12, ti12, IM(t5), IM(t4));

                    IM(d2) = IM(c2) - RE(c5);
                    IM(d3) = IM(c3) - RE(c4);
                    RE(d4) = RE(c3) - IM(c4);
                    RE(d5) = RE(c2) - IM(c5);
                    RE(d2) = RE(c2) + IM(c5);
                    IM(d5) = IM(c2) + RE(c5);
                    RE(d3) = RE(c3) + IM(c4);
                    IM(d4) = IM(c3) + RE(c4);

#if 1
                    ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
                        RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
                        RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
                    ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
                        RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
                    ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
                        RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
#else
                    ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
                        IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
                        IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
                    ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
                        IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
                    ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
                        IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
#endif
                }
            }
        }
    }
}


/*----------------------------------------------------------------------
   cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
  ----------------------------------------------------------------------*/

static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
                             const uint16_t *ifac, const complex_t *wa,
                             const int8_t isign)
{
    uint16_t i;
    uint16_t k1, l1, l2;
    uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;

    nf = ifac[1];
    na = 0;
    l1 = 1;
    iw = 0;

    for (k1 = 2; k1 <= nf+1; k1++)
    {
        ip = ifac[k1];
        l2 = ip*l1;
        ido = n / l2;
        idl1 = ido*l1;

        switch (ip)
        {
        case 4:
            ix2 = iw + ido;
            ix3 = ix2 + ido;

            if (na == 0)
                passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
            else
                passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);

            na = 1 - na;
            break;
        case 2:
            if (na == 0)
                passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
            else
                passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);

            na = 1 - na;
            break;
        case 3:
            ix2 = iw + ido;

            if (na == 0)
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
            else
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);

            na = 1 - na;
            break;
        case 5:
            ix2 = iw + ido;
            ix3 = ix2 + ido;
            ix4 = ix3 + ido;

            if (na == 0)
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
            else
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);

            na = 1 - na;
            break;
        }

        l1 = l2;
        iw += (ip-1) * ido;
    }

    if (na == 0)
        return;

    for (i = 0; i < n; i++)
    {
        RE(c[i]) = RE(ch[i]);
        IM(c[i]) = IM(ch[i]);
    }
}

static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
                             const uint16_t *ifac, const complex_t *wa,
                             const int8_t isign)
{
    uint16_t i;
    uint16_t k1, l1, l2;
    uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;

    nf = ifac[1];
    na = 0;
    l1 = 1;
    iw = 0;

    for (k1 = 2; k1 <= nf+1; k1++)
    {
        ip = ifac[k1];
        l2 = ip*l1;
        ido = n / l2;
        idl1 = ido*l1;

        switch (ip)
        {
        case 4:
            ix2 = iw + ido;
            ix3 = ix2 + ido;

            if (na == 0)
                passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
            else
                passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);

            na = 1 - na;
            break;
        case 2:
            if (na == 0)
                passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
            else
                passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);

            na = 1 - na;
            break;
        case 3:
            ix2 = iw + ido;

            if (na == 0)
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
            else
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);

            na = 1 - na;
            break;
        case 5:
            ix2 = iw + ido;
            ix3 = ix2 + ido;
            ix4 = ix3 + ido;

            if (na == 0)
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
            else
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);

            na = 1 - na;
            break;
        }

        l1 = l2;
        iw += (ip-1) * ido;
    }

    if (na == 0)
        return;

    for (i = 0; i < n; i++)
    {
        RE(c[i]) = RE(ch[i]);
        IM(c[i]) = IM(ch[i]);
    }
}

void cfftf(cfft_info *cfft, complex_t *c)
{
    cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1);
}

void cfftb(cfft_info *cfft, complex_t *c)
{
    cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
}

static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
{
    static uint16_t ntryh[4] = {3, 4, 2, 5};
#ifndef FIXED_POINT
    real_t arg, argh, argld, fi;
    uint16_t ido, ipm;
    uint16_t i1, k1, l1, l2;
    uint16_t ld, ii, ip;
#endif
    uint16_t ntry = 0, i, j;
    uint16_t ib;
    uint16_t nf, nl, nq, nr;

    nl = n;
    nf = 0;
    j = 0;

startloop:
    j++;

    if (j <= 4)
        ntry = ntryh[j-1];
    else
        ntry += 2;

    do
    {
        nq = nl / ntry;
        nr = nl - ntry*nq;

        if (nr != 0)
            goto startloop;

        nf++;
        ifac[nf+1] = ntry;
        nl = nq;

        if (ntry == 2 && nf != 1)
        {
            for (i = 2; i <= nf; i++)
            {
                ib = nf - i + 2;
                ifac[ib+1] = ifac[ib];
            }
            ifac[2] = 2;
        }
    } while (nl != 1);

    ifac[0] = n;
    ifac[1] = nf;

#ifndef FIXED_POINT
    argh = (real_t)2.0*(real_t)M_PI / (real_t)n;
    i = 0;
    l1 = 1;

    for (k1 = 1; k1 <= nf; k1++)
    {
        ip = ifac[k1+1];
        ld = 0;
        l2 = l1*ip;
        ido = n / l2;
        ipm = ip - 1;

        for (j = 0; j < ipm; j++)
        {
            i1 = i;
            RE(wa[i]) = 1.0;
            IM(wa[i]) = 0.0;
            ld += l1;
            fi = 0;
            argld = ld*argh;

            for (ii = 0; ii < ido; ii++)
            {
                i++;
                fi++;
                arg = fi * argld;
                RE(wa[i]) = (real_t)cos(arg);
#if 1
                IM(wa[i]) = (real_t)sin(arg);
#else
                IM(wa[i]) = (real_t)-sin(arg);
#endif
            }

            if (ip > 5)
            {
                RE(wa[i1]) = RE(wa[i]);
                IM(wa[i1]) = IM(wa[i]);
            }
        }
        l1 = l2;
    }
#endif
}

cfft_info *cffti(uint16_t n)
{
    cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));

    cfft->n = n;
    cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t));

#ifndef FIXED_POINT
    cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));

    cffti1(n, cfft->tab, cfft->ifac);
#else
    cffti1(n, NULL, cfft->ifac);

    switch (n)
    {
    case 64: cfft->tab = (complex_t*)cfft_tab_64; break;
    case 512: cfft->tab = (complex_t*)cfft_tab_512; break;
#ifdef LD_DEC
    case 256: cfft->tab = (complex_t*)cfft_tab_256; break;
#endif

#ifdef ALLOW_SMALL_FRAMELENGTH
    case 60: cfft->tab = (complex_t*)cfft_tab_60; break;
    case 480: cfft->tab = (complex_t*)cfft_tab_480; break;
#ifdef LD_DEC
    case 240: cfft->tab = (complex_t*)cfft_tab_240; break;
#endif
#endif
    case 128: cfft->tab = (complex_t*)cfft_tab_128; break;
    }
#endif

    return cfft;
}

void cfftu(cfft_info *cfft)
{
    if (cfft->work) faad_free(cfft->work);
#ifndef FIXED_POINT
    if (cfft->tab) faad_free(cfft->tab);
#endif

    if (cfft) faad_free(cfft);
}