Mercurial > mplayer.hg
view mp3lib/dct36.c @ 30857:77ce62f13d42
Use the high-level QuickTime decoding APIs (DecompressSequenceFrameS and
friends) instead of the unsupported, internal ones (ImageCodecBeginBand
etc.). This is a prerequisite for, among others, Apple ProRes 4:2:2 support,
and simplifies the file by quite a bit.
Tested on Linux with all existing QuickTime codecs I could get to work in the
first place; qt261, qtavui, qtsvq3 have no change. qtcvid appears to not give
bit-exact the same output as before, but it looks just the same in playback
to me. qt3ivx stops crashing on exit (so works better than before). With some
extra patches and a codecs.conf entry, ProRes 4:2:2 also works, including on
Linux.
Since codec initialization is now actually done on decoder init instead of on
first frame, fallback should also work a bit better (although usually, qtvideo
is last in the chain). Also made the decoder complain explicitly if the
demuxer data is not there (ie., the user tried to run without -demuxer mov).
This patch is a cleaned up version of what Andrew Wason (rectalogic A
rectalogic D com) posted to mplayer-dev-eng in June.
author | sesse |
---|---|
date | Mon, 15 Mar 2010 12:05:56 +0000 |
parents | 32725ca88fed |
children | 0ad2da052b2e |
line wrap: on
line source
/* * Modified for use with MPlayer, for details see the changelog at * http://svn.mplayerhq.hu/mplayer/trunk/ * $Id$ */ /* // This is an optimized DCT from Jeff Tsay's maplay 1.2+ package. // Saved one multiplication by doing the 'twiddle factor' stuff // together with the window mul. (MH) // // This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the // 9 point IDCT needs to be reduced further. Unfortunately, I don't // know how to do that, because 9 is not an even number. - Jeff. // ////////////////////////////////////////////////////////////////// // // 9 Point Inverse Discrete Cosine Transform // // This piece of code is Copyright 1997 Mikko Tommila and is freely usable // by anybody. The algorithm itself is of course in the public domain. // // Again derived heuristically from the 9-point WFTA. // // The algorithm is optimized (?) for speed, not for small rounding errors or // good readability. // // 36 additions, 11 multiplications // // Again this is very likely sub-optimal. // // The code is optimized to use a minimum number of temporary variables, // so it should compile quite well even on 8-register Intel x86 processors. // This makes the code quite obfuscated and very difficult to understand. // // References: // [1] S. Winograd: "On Computing the Discrete Fourier Transform", // Mathematics of Computation, Volume 32, Number 141, January 1978, // Pages 175-199 */ /*------------------------------------------------------------------*/ /* */ /* Function: Calculation of the inverse MDCT */ /* */ /*------------------------------------------------------------------*/ static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf) { #ifdef NEW_DCT9 real tmp[18]; #endif { register real *in = inbuf; in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14]; in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11]; in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8]; in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5]; in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2]; in[2] +=in[1]; in[1] +=in[0]; in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9]; in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1]; #ifdef NEW_DCT9 { real t0, t1, t2, t3, t4, t5, t6, t7; t1 = COS6_2 * in[12]; t2 = COS6_2 * (in[8] + in[16] - in[4]); t3 = in[0] + t1; t4 = in[0] - t1 - t1; t5 = t4 - t2; t0 = cos9[0] * (in[4] + in[8]); t1 = cos9[1] * (in[8] - in[16]); tmp[4] = t4 + t2 + t2; t2 = cos9[2] * (in[4] + in[16]); t6 = t3 - t0 - t2; t0 += t3 + t1; t3 += t2 - t1; t2 = cos18[0] * (in[2] + in[10]); t4 = cos18[1] * (in[10] - in[14]); t7 = COS6_1 * in[6]; t1 = t2 + t4 + t7; tmp[0] = t0 + t1; tmp[8] = t0 - t1; t1 = cos18[2] * (in[2] + in[14]); t2 += t1 - t7; tmp[3] = t3 + t2; t0 = COS6_1 * (in[10] + in[14] - in[2]); tmp[5] = t3 - t2; t4 -= t1 + t7; tmp[1] = t5 - t0; tmp[7] = t5 + t0; tmp[2] = t6 + t4; tmp[6] = t6 - t4; } { real t0, t1, t2, t3, t4, t5, t6, t7; t1 = COS6_2 * in[13]; t2 = COS6_2 * (in[9] + in[17] - in[5]); t3 = in[1] + t1; t4 = in[1] - t1 - t1; t5 = t4 - t2; t0 = cos9[0] * (in[5] + in[9]); t1 = cos9[1] * (in[9] - in[17]); tmp[13] = (t4 + t2 + t2) * tfcos36[17-13]; t2 = cos9[2] * (in[5] + in[17]); t6 = t3 - t0 - t2; t0 += t3 + t1; t3 += t2 - t1; t2 = cos18[0] * (in[3] + in[11]); t4 = cos18[1] * (in[11] - in[15]); t7 = COS6_1 * in[7]; t1 = t2 + t4 + t7; tmp[17] = (t0 + t1) * tfcos36[17-17]; tmp[9] = (t0 - t1) * tfcos36[17-9]; t1 = cos18[2] * (in[3] + in[15]); t2 += t1 - t7; tmp[14] = (t3 + t2) * tfcos36[17-14]; t0 = COS6_1 * (in[11] + in[15] - in[3]); tmp[12] = (t3 - t2) * tfcos36[17-12]; t4 -= t1 + t7; tmp[16] = (t5 - t0) * tfcos36[17-16]; tmp[10] = (t5 + t0) * tfcos36[17-10]; tmp[15] = (t6 + t4) * tfcos36[17-15]; tmp[11] = (t6 - t4) * tfcos36[17-11]; } #define MACRO(v) { \ real tmpval; \ real sum0 = tmp[(v)]; \ real sum1 = tmp[17-(v)]; \ out2[9+(v)] = (tmpval = sum0 + sum1) * w[27+(v)]; \ out2[8-(v)] = tmpval * w[26-(v)]; \ sum0 -= sum1; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; } { register real *out2 = o2; register real *w = wintab; register real *out1 = o1; register real *ts = tsbuf; MACRO(0); MACRO(1); MACRO(2); MACRO(3); MACRO(4); MACRO(5); MACRO(6); MACRO(7); MACRO(8); } #else { #define MACRO0(v) { \ real tmp; \ out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \ out2[8-(v)] = tmp * w[26-(v)]; } \ sum0 -= sum1; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; #define MACRO1(v) { \ real sum0,sum1; \ sum0 = tmp1a + tmp2a; \ sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \ MACRO0(v); } #define MACRO2(v) { \ real sum0,sum1; \ sum0 = tmp2a - tmp1a; \ sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \ MACRO0(v); } register const real *c = COS9; register real *out2 = o2; register real *w = wintab; register real *out1 = o1; register real *ts = tsbuf; real ta33,ta66,tb33,tb66; ta33 = in[2*3+0] * c[3]; ta66 = in[2*6+0] * c[6]; tb33 = in[2*3+1] * c[3]; tb66 = in[2*6+1] * c[6]; { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7]; tmp1b = in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7]; tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8]; tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8]; MACRO1(0); MACRO2(8); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3]; tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3]; tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0]; tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1]; MACRO1(1); MACRO2(7); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1]; tmp1b = in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1]; tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4]; tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4]; MACRO1(2); MACRO2(6); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5]; tmp1b = in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5]; tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2]; tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2]; MACRO1(3); MACRO2(5); } { real sum0,sum1; sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0]; sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4]; MACRO0(4); } } #endif } }