Mercurial > mplayer.hg
view liba52/srfftp.h @ 987:9ad2313db4bf
Hard checking versions of gcc and as
author | nickols_k |
---|---|
date | Mon, 04 Jun 2001 08:07:57 +0000 |
parents | deeaad5bf1d7 |
children | 0410677eda4a |
line wrap: on
line source
/* * srfftp.h * * Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000 * * 64 and 128 point split radix fft for ac3dec * * The algorithm is desribed in the book: * "Computational Frameworks of the Fast Fourier Transform". * * The ideas and the the organization of code borrowed from djbfft written by * D. J. Bernstein <djb@cr.py.to>. djbff can be found at * http://cr.yp.to/djbfft.html. * * srfftp.h is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * srfftp.h is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #ifndef SRFFTP_H__ #define SRFFTP_H__ static complex_t delta16[4] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.92387953251129, -0.38268343236509}, {0.70710678118655, -0.70710678118655}, {0.38268343236509, -0.92387953251129}}; static complex_t delta16_3[4] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.38268343236509, -0.92387953251129}, {-0.70710678118655, -0.70710678118655}, {-0.92387953251129, 0.38268343236509}}; static complex_t delta32[8] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.98078528040323, -0.19509032201613}, {0.92387953251129, -0.38268343236509}, {0.83146961230255, -0.55557023301960}, {0.70710678118655, -0.70710678118655}, {0.55557023301960, -0.83146961230255}, {0.38268343236509, -0.92387953251129}, {0.19509032201613, -0.98078528040323}}; static complex_t delta32_3[8] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.83146961230255, -0.55557023301960}, {0.38268343236509, -0.92387953251129}, {-0.19509032201613, -0.98078528040323}, {-0.70710678118655, -0.70710678118655}, {-0.98078528040323, -0.19509032201613}, {-0.92387953251129, 0.38268343236509}, {-0.55557023301960, 0.83146961230255}}; static complex_t delta64[16] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.99518472667220, -0.09801714032956}, {0.98078528040323, -0.19509032201613}, {0.95694033573221, -0.29028467725446}, {0.92387953251129, -0.38268343236509}, {0.88192126434836, -0.47139673682600}, {0.83146961230255, -0.55557023301960}, {0.77301045336274, -0.63439328416365}, {0.70710678118655, -0.70710678118655}, {0.63439328416365, -0.77301045336274}, {0.55557023301960, -0.83146961230255}, {0.47139673682600, -0.88192126434835}, {0.38268343236509, -0.92387953251129}, {0.29028467725446, -0.95694033573221}, {0.19509032201613, -0.98078528040323}, {0.09801714032956, -0.99518472667220}}; static complex_t delta64_3[16] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.95694033573221, -0.29028467725446}, {0.83146961230255, -0.55557023301960}, {0.63439328416365, -0.77301045336274}, {0.38268343236509, -0.92387953251129}, {0.09801714032956, -0.99518472667220}, {-0.19509032201613, -0.98078528040323}, {-0.47139673682600, -0.88192126434836}, {-0.70710678118655, -0.70710678118655}, {-0.88192126434835, -0.47139673682600}, {-0.98078528040323, -0.19509032201613}, {-0.99518472667220, 0.09801714032956}, {-0.92387953251129, 0.38268343236509}, {-0.77301045336274, 0.63439328416365}, {-0.55557023301960, 0.83146961230255}, {-0.29028467725446, 0.95694033573221}}; static complex_t delta128[32] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.99879545620517, -0.04906767432742}, {0.99518472667220, -0.09801714032956}, {0.98917650996478, -0.14673047445536}, {0.98078528040323, -0.19509032201613}, {0.97003125319454, -0.24298017990326}, {0.95694033573221, -0.29028467725446}, {0.94154406518302, -0.33688985339222}, {0.92387953251129, -0.38268343236509}, {0.90398929312344, -0.42755509343028}, {0.88192126434836, -0.47139673682600}, {0.85772861000027, -0.51410274419322}, {0.83146961230255, -0.55557023301960}, {0.80320753148064, -0.59569930449243}, {0.77301045336274, -0.63439328416365}, {0.74095112535496, -0.67155895484702}, {0.70710678118655, -0.70710678118655}, {0.67155895484702, -0.74095112535496}, {0.63439328416365, -0.77301045336274}, {0.59569930449243, -0.80320753148064}, {0.55557023301960, -0.83146961230255}, {0.51410274419322, -0.85772861000027}, {0.47139673682600, -0.88192126434835}, {0.42755509343028, -0.90398929312344}, {0.38268343236509, -0.92387953251129}, {0.33688985339222, -0.94154406518302}, {0.29028467725446, -0.95694033573221}, {0.24298017990326, -0.97003125319454}, {0.19509032201613, -0.98078528040323}, {0.14673047445536, -0.98917650996478}, {0.09801714032956, -0.99518472667220}, {0.04906767432742, -0.99879545620517}}; static complex_t delta128_3[32] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.98917650996478, -0.14673047445536}, {0.95694033573221, -0.29028467725446}, {0.90398929312344, -0.42755509343028}, {0.83146961230255, -0.55557023301960}, {0.74095112535496, -0.67155895484702}, {0.63439328416365, -0.77301045336274}, {0.51410274419322, -0.85772861000027}, {0.38268343236509, -0.92387953251129}, {0.24298017990326, -0.97003125319454}, {0.09801714032956, -0.99518472667220}, {-0.04906767432742, -0.99879545620517}, {-0.19509032201613, -0.98078528040323}, {-0.33688985339222, -0.94154406518302}, {-0.47139673682600, -0.88192126434836}, {-0.59569930449243, -0.80320753148065}, {-0.70710678118655, -0.70710678118655}, {-0.80320753148065, -0.59569930449243}, {-0.88192126434835, -0.47139673682600}, {-0.94154406518302, -0.33688985339222}, {-0.98078528040323, -0.19509032201613}, {-0.99879545620517, -0.04906767432742}, {-0.99518472667220, 0.09801714032956}, {-0.97003125319454, 0.24298017990326}, {-0.92387953251129, 0.38268343236509}, {-0.85772861000027, 0.51410274419322}, {-0.77301045336274, 0.63439328416365}, {-0.67155895484702, 0.74095112535496}, {-0.55557023301960, 0.83146961230255}, {-0.42755509343028, 0.90398929312344}, {-0.29028467725446, 0.95694033573221}, {-0.14673047445536, 0.98917650996478}}; #define HSQRT2 0.707106781188; #define TRANSZERO(A0,A4,A8,A12) { \ u_r = wTB[0].re; \ v_i = u_r - wTB[k*2].re; \ u_r += wTB[k*2].re; \ u_i = wTB[0].im; \ v_r = wTB[k*2].im - u_i; \ u_i += wTB[k*2].im; \ a_r = A0.re; \ a_i = A0.im; \ a1_r = a_r; \ a1_r += u_r; \ A0.re = a1_r; \ a_r -= u_r; \ A8.re = a_r; \ a1_i = a_i; \ a1_i += u_i; \ A0.im = a1_i; \ a_i -= u_i; \ A8.im = a_i; \ a1_r = A4.re; \ a1_i = A4.im; \ a_r = a1_r; \ a_r -= v_r; \ A4.re = a_r; \ a1_r += v_r; \ A12.re = a1_r; \ a_i = a1_i; \ a_i -= v_i; \ A4.im = a_i; \ a1_i += v_i; \ A12.im = a1_i; \ } #define TRANSHALF_16(A2,A6,A10,A14) {\ u_r = wTB[2].re; \ a_r = u_r; \ u_i = wTB[2].im; \ u_r += u_i; \ u_i -= a_r; \ a_r = wTB[6].re; \ a1_r = a_r; \ a_i = wTB[6].im; \ a_r = a_i - a_r; \ a_i += a1_r; \ v_i = u_r - a_r; \ u_r += a_r; \ v_r = u_i + a_i; \ u_i -= a_i; \ v_i *= HSQRT2; \ v_r *= HSQRT2; \ u_r *= HSQRT2; \ u_i *= HSQRT2; \ a_r = A2.re; \ a_i = A2.im; \ a1_r = a_r; \ a1_r += u_r; \ A2.re = a1_r; \ a_r -= u_r; \ A10.re = a_r; \ a1_i = a_i; \ a1_i += u_i; \ A2.im = a1_i; \ a_i -= u_i; \ A10.im = a_i; \ a1_r = A6.re; \ a1_i = A6.im; \ a_r = a1_r; \ a1_r += v_r; \ A6.re = a1_r; \ a_r -= v_r; \ A14.re = a_r; \ a_i = a1_i; \ a1_i -= v_i; \ A6.im = a1_i; \ a_i += v_i; \ A14.im = a_i; \ } #define TRANS(A1,A5,A9,A13,WT,WB,D,D3) { \ u_r = WT.re; \ a_r = u_r; \ a_r *= D.im; \ u_r *= D.re; \ a_i = WT.im; \ a1_i = a_i; \ a1_i *= D.re; \ a_i *= D.im; \ u_r -= a_i; \ u_i = a_r; \ u_i += a1_i; \ a_r = WB.re; \ a1_r = a_r; \ a1_r *= D3.re; \ a_r *= D3.im; \ a_i = WB.im; \ a1_i = a_i; \ a_i *= D3.re; \ a1_i *= D3.im; \ a1_r -= a1_i; \ a_r += a_i; \ v_i = u_r - a1_r; \ u_r += a1_r; \ v_r = a_r - u_i; \ u_i += a_r; \ a_r = A1.re; \ a_i = A1.im; \ a1_r = a_r; \ a1_r += u_r; \ A1.re = a1_r; \ a_r -= u_r; \ A9.re = a_r; \ a1_i = a_i; \ a1_i += u_i; \ A1.im = a1_i; \ a_i -= u_i; \ A9.im = a_i; \ a1_r = A5.re; \ a1_i = A5.im; \ a_r = a1_r; \ a1_r -= v_r; \ A5.re = a1_r; \ a_r += v_r; \ A13.re = a_r; \ a_i = a1_i; \ a1_i -= v_i; \ A5.im = a1_i; \ a_i += v_i; \ A13.im = a_i; \ } #endif