Mercurial > mplayer.hg
view libaf/filter.c @ 35490:a5f5f61a7a35
Replace confusing guiInfoMediumClear() by MediumPrepare().
(It has been completely rewritten.)
Now call MediumPrepare() only once for all play events. Check for
current StreamType and clear stuff not being used for this stream
type (and only stuff that need to be cleared).
author | ib |
---|---|
date | Mon, 03 Dec 2012 16:26:39 +0000 |
parents | 32725ca88fed |
children |
line wrap: on
line source
/* * design and implementation of different types of digital filters * * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au * * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with MPlayer; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <string.h> #include <math.h> #include "dsp.h" /****************************************************************************** * FIR filter implementations ******************************************************************************/ /* C implementation of FIR filter y=w*x n number of filter taps, where mod(n,4)==0 w filter taps x input signal must be a circular buffer which is indexed backwards */ inline FLOAT_TYPE af_filter_fir(register unsigned int n, const FLOAT_TYPE* w, const FLOAT_TYPE* x) { register FLOAT_TYPE y; // Output y = 0.0; do{ n--; y+=w[n]*x[n]; }while(n != 0); return y; } /* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution) n number of filter taps, where mod(n,4)==0 d number of filters xi current index in xq w filter taps k by n big x input signal must be a circular buffers which are indexed backwards y output buffer s output buffer stride */ FLOAT_TYPE* af_filter_pfir(unsigned int n, unsigned int d, unsigned int xi, const FLOAT_TYPE** w, const FLOAT_TYPE** x, FLOAT_TYPE* y, unsigned int s) { register const FLOAT_TYPE* xt = *x + xi; register const FLOAT_TYPE* wt = *w; register int nt = 2*n; while(d-- > 0){ *y = af_filter_fir(n,wt,xt); wt+=n; xt+=nt; y+=s; } return y; } /* Add new data to circular queue designed to be used with a parallel FIR filter, with d filters. xq is the circular queue, in pointing at the new samples, xi current index in xq and n the length of the filter. xq must be n*2 by k big, s is the index for in. */ int af_filter_updatepq(unsigned int n, unsigned int d, unsigned int xi, FLOAT_TYPE** xq, const FLOAT_TYPE* in, unsigned int s) { register FLOAT_TYPE* txq = *xq + xi; register int nt = n*2; while(d-- >0){ *txq= *(txq+n) = *in; txq+=nt; in+=s; } return (++xi)&(n-1); } /****************************************************************************** * FIR filter design ******************************************************************************/ /* Design FIR filter using the Window method n filter length must be odd for HP and BS filters w buffer for the filter taps (must be n long) fc cutoff frequencies (1 for LP and HP, 2 for BP and BS) 0 < fc < 1 where 1 <=> Fs/2 flags window and filter type as defined in filter.h variables are ored together: i.e. LP|HAMMING will give a low pass filter designed using a hamming window opt beta constant used only when designing using kaiser windows returns 0 if OK, -1 if fail */ int af_filter_design_fir(unsigned int n, FLOAT_TYPE* w, const FLOAT_TYPE* fc, unsigned int flags, FLOAT_TYPE opt) { unsigned int o = n & 1; // Indicator for odd filter length unsigned int end = ((n + 1) >> 1) - o; // Loop end unsigned int i; // Loop index FLOAT_TYPE k1 = 2 * M_PI; // 2*pi*fc1 FLOAT_TYPE k2 = 0.5 * (FLOAT_TYPE)(1 - o);// Constant used if the filter has even length FLOAT_TYPE k3; // 2*pi*fc2 Constant used in BP and BS design FLOAT_TYPE g = 0.0; // Gain FLOAT_TYPE t1,t2,t3; // Temporary variables FLOAT_TYPE fc1,fc2; // Cutoff frequencies // Sanity check if(!w || (n == 0)) return -1; // Get window coefficients switch(flags & WINDOW_MASK){ case(BOXCAR): af_window_boxcar(n,w); break; case(TRIANG): af_window_triang(n,w); break; case(HAMMING): af_window_hamming(n,w); break; case(HANNING): af_window_hanning(n,w); break; case(BLACKMAN): af_window_blackman(n,w); break; case(FLATTOP): af_window_flattop(n,w); break; case(KAISER): af_window_kaiser(n,w,opt); break; default: return -1; } if(flags & (LP | HP)){ fc1=*fc; // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2 fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25; k1 *= fc1; if(flags & LP){ // Low pass filter // If the filter length is odd, there is one point which is exactly // in the middle. The value at this point is 2*fCutoff*sin(x)/x, // where x is zero. To make sure nothing strange happens, we set this // value separately. if (o){ w[end] = fc1 * w[end] * 2.0; g=w[end]; } // Create filter for (i=0 ; i<end ; i++){ t1 = (FLOAT_TYPE)(i+1) - k2; w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc g += 2*w[end-i-1]; // Total gain in filter } } else{ // High pass filter if (!o) // High pass filters must have odd length return -1; w[end] = 1.0 - (fc1 * w[end] * 2.0); g= w[end]; // Create filter for (i=0 ; i<end ; i++){ t1 = (FLOAT_TYPE)(i+1); w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter } } } if(flags & (BP | BS)){ fc1=fc[0]; fc2=fc[1]; // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2 fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25; fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25; k3 = k1 * fc2; // 2*pi*fc2 k1 *= fc1; // 2*pi*fc1 if(flags & BP){ // Band pass // Calculate center tap if (o){ g=w[end]*(fc1+fc2); w[end] = (fc2 - fc1) * w[end] * 2.0; } // Create filter for (i=0 ; i<end ; i++){ t1 = (FLOAT_TYPE)(i+1) - k2; t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2 t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1 g += w[end-i-1] * (t3 + t2); // Total gain in filter w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3); } } else{ // Band stop if (!o) // Band stop filters must have odd length return -1; w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0; g= w[end]; // Create filter for (i=0 ; i<end ; i++){ t1 = (FLOAT_TYPE)(i+1); t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1 t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2 w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3); g += 2*w[end-i-1]; // Total gain in filter } } } // Normalize gain g=1/g; for (i=0; i<n; i++) w[i] *= g; return 0; } /* Design polyphase FIR filter from prototype filter n length of prototype filter k number of polyphase components w prototype filter taps pw Parallel FIR filter g Filter gain flags FWD forward indexing REW reverse indexing ODD multiply every 2nd filter tap by -1 => HP filter returns 0 if OK, -1 if fail */ int af_filter_design_pfir(unsigned int n, unsigned int k, const FLOAT_TYPE* w, FLOAT_TYPE** pw, FLOAT_TYPE g, unsigned int flags) { int l = (int)n/k; // Length of individual FIR filters int i; // Counters int j; FLOAT_TYPE t; // g * w[i] // Sanity check if(l<1 || k<1 || !w || !pw) return -1; // Do the stuff if(flags&REW){ for(j=l-1;j>-1;j--){//Columns for(i=0;i<(int)k;i++){//Rows t=g * *w++; pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1); } } } else{ for(j=0;j<l;j++){//Columns for(i=0;i<(int)k;i++){//Rows t=g * *w++; pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? 1 : -1) : 1); } } } return -1; } /****************************************************************************** * IIR filter design ******************************************************************************/ /* Helper functions for the bilinear transform */ /* Pre-warp the coefficients of a numerator or denominator. Note that a0 is assumed to be 1, so there is no wrapping of it. */ static void af_filter_prewarp(FLOAT_TYPE* a, FLOAT_TYPE fc, FLOAT_TYPE fs) { FLOAT_TYPE wp; wp = 2.0 * fs * tan(M_PI * fc / fs); a[2] = a[2]/(wp * wp); a[1] = a[1]/wp; } /* Transform the numerator and denominator coefficients of s-domain biquad section into corresponding z-domain coefficients. The transfer function for z-domain is: 1 + alpha1 * z^(-1) + alpha2 * z^(-2) H(z) = ------------------------------------- 1 + beta1 * z^(-1) + beta2 * z^(-2) Store the 4 IIR coefficients in array pointed by coef in following order: beta1, beta2 (denominator) alpha1, alpha2 (numerator) Arguments: a - s-domain numerator coefficients b - s-domain denominator coefficients k - filter gain factor. Initially set to 1 and modified by each biquad section in such a way, as to make it the coefficient by which to multiply the overall filter gain in order to achieve a desired overall filter gain, specified in initial value of k. fs - sampling rate (Hz) coef - array of z-domain coefficients to be filled in. Return: On return, set coef z-domain coefficients and k to the gain required to maintain overall gain = 1.0; */ static void af_filter_bilinear(const FLOAT_TYPE* a, const FLOAT_TYPE* b, FLOAT_TYPE* k, FLOAT_TYPE fs, FLOAT_TYPE *coef) { FLOAT_TYPE ad, bd; /* alpha (Numerator in s-domain) */ ad = 4. * a[2] * fs * fs + 2. * a[1] * fs + a[0]; /* beta (Denominator in s-domain) */ bd = 4. * b[2] * fs * fs + 2. * b[1] * fs + b[0]; /* Update gain constant for this section */ *k *= ad/bd; /* Denominator */ *coef++ = (2. * b[0] - 8. * b[2] * fs * fs)/bd; /* beta1 */ *coef++ = (4. * b[2] * fs * fs - 2. * b[1] * fs + b[0])/bd; /* beta2 */ /* Numerator */ *coef++ = (2. * a[0] - 8. * a[2] * fs * fs)/ad; /* alpha1 */ *coef = (4. * a[2] * fs * fs - 2. * a[1] * fs + a[0])/ad; /* alpha2 */ } /* IIR filter design using bilinear transform and prewarp. Transforms 2nd order s domain analog filter into a digital IIR biquad link. To create a filter fill in a, b, Q and fs and make space for coef and k. Example Butterworth design: Below are Butterworth polynomials, arranged as a series of 2nd order sections: Note: n is filter order. n Polynomials ------------------------------------------------------------------- 2 s^2 + 1.4142s + 1 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1) 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1) For n=4 we have following equation for the filter transfer function: 1 1 T(s) = --------------------------- * ---------------------------- s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1 The filter consists of two 2nd order sections since highest s power is 2. Now we can take the coefficients, or the numbers by which s is multiplied and plug them into a standard formula to be used by bilinear transform. Our standard form for each 2nd order section is: a2 * s^2 + a1 * s + a0 H(s) = ---------------------- b2 * s^2 + b1 * s + b0 Note that Butterworth numerator is 1 for all filter sections, which means s^2 = 0 and s^1 = 0 Let's convert standard Butterworth polynomials into this form: 0 + 0 + 1 0 + 0 + 1 --------------------------- * -------------------------- 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1 Section 1: a2 = 0; a1 = 0; a0 = 1; b2 = 1; b1 = 0.765367; b0 = 1; Section 2: a2 = 0; a1 = 0; a0 = 1; b2 = 1; b1 = 1.847759; b0 = 1; Q is filter quality factor or resonance, in the range of 1 to 1000. The overall filter Q is a product of all 2nd order stages. For example, the 6th order filter (3 stages, or biquads) with individual Q of 2 will have filter Q = 2 * 2 * 2 = 8. Arguments: a - s-domain numerator coefficients, a[1] is always assumed to be 1.0 b - s-domain denominator coefficients Q - Q value for the filter k - filter gain factor. Initially set to 1 and modified by each biquad section in such a way, as to make it the coefficient by which to multiply the overall filter gain in order to achieve a desired overall filter gain, specified in initial value of k. fs - sampling rate (Hz) coef - array of z-domain coefficients to be filled in. Note: Upon return from each call, the k argument will be set to a value, by which to multiply our actual signal in order for the gain to be one. On second call to szxform() we provide k that was changed by the previous section. During actual audio filtering k can be used for gain compensation. return -1 if fail 0 if success. */ int af_filter_szxform(const FLOAT_TYPE* a, const FLOAT_TYPE* b, FLOAT_TYPE Q, FLOAT_TYPE fc, FLOAT_TYPE fs, FLOAT_TYPE *k, FLOAT_TYPE *coef) { FLOAT_TYPE at[3]; FLOAT_TYPE bt[3]; if(!a || !b || !k || !coef || (Q>1000.0 || Q< 1.0)) return -1; memcpy(at,a,3*sizeof(FLOAT_TYPE)); memcpy(bt,b,3*sizeof(FLOAT_TYPE)); bt[1]/=Q; /* Calculate a and b and overwrite the original values */ af_filter_prewarp(at, fc, fs); af_filter_prewarp(bt, fc, fs); /* Execute bilinear transform */ af_filter_bilinear(at, bt, k, fs, coef); return 0; }