Mercurial > mplayer.hg
view libaf/window.c @ 34443:bad0e4dbfbb6
Add references for new fate samples.
author | reimar |
---|---|
date | Sun, 08 Jan 2012 10:15:51 +0000 |
parents | 32725ca88fed |
children |
line wrap: on
line source
/* * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au * * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with MPlayer; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* Calculates a number of window functions. The following window functions are currently implemented: Boxcar, Triang, Hanning, Hamming, Blackman, Flattop and Kaiser. In the function call n is the number of filter taps and w the buffer in which the filter coefficients will be stored. */ #include <math.h> #include "dsp.h" /* // Boxcar // // n window length // w buffer for the window parameters */ void af_window_boxcar(int n, FLOAT_TYPE* w) { int i; // Calculate window coefficients for (i=0 ; i<n ; i++) w[i] = 1.0; } /* // Triang a.k.a Bartlett // // | (N-1)| // 2 * |k - -----| // | 2 | // w = 1.0 - --------------- // N+1 // n window length // w buffer for the window parameters */ void af_window_triang(int n, FLOAT_TYPE* w) { FLOAT_TYPE k1 = (FLOAT_TYPE)(n & 1); FLOAT_TYPE k2 = 1/((FLOAT_TYPE)n + k1); int end = (n + 1) >> 1; int i; // Calculate window coefficients for (i=0 ; i<end ; i++) w[i] = w[n-i-1] = (2.0*((FLOAT_TYPE)(i+1))-(1.0-k1))*k2; } /* // Hanning // 2*pi*k // w = 0.5 - 0.5*cos(------), where 0 < k <= N // N+1 // n window length // w buffer for the window parameters */ void af_window_hanning(int n, FLOAT_TYPE* w) { int i; FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n+1)); // 2*pi/(N+1) // Calculate window coefficients for (i=0; i<n; i++) *w++ = 0.5*(1.0 - cos(k*(FLOAT_TYPE)(i+1))); } /* // Hamming // 2*pi*k // w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N // N-1 // // n window length // w buffer for the window parameters */ void af_window_hamming(int n,FLOAT_TYPE* w) { int i; FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1) // Calculate window coefficients for (i=0; i<n; i++) *w++ = 0.54 - 0.46*cos(k*(FLOAT_TYPE)i); } /* // Blackman // 2*pi*k 4*pi*k // w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N // N-1 N-1 // // n window length // w buffer for the window parameters */ void af_window_blackman(int n,FLOAT_TYPE* w) { int i; FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1) FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1) // Calculate window coefficients for (i=0; i<n; i++) *w++ = 0.42 - 0.50*cos(k1*(FLOAT_TYPE)i) + 0.08*cos(k2*(FLOAT_TYPE)i); } /* // Flattop // 2*pi*k 4*pi*k // w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N // N-1 N-1 // // n window length // w buffer for the window parameters */ void af_window_flattop(int n,FLOAT_TYPE* w) { int i; FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1) FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1) // Calculate window coefficients for (i=0; i<n; i++) *w++ = 0.2810638602 - 0.5208971735*cos(k1*(FLOAT_TYPE)i) + 0.1980389663*cos(k2*(FLOAT_TYPE)i); } /* Computes the 0th order modified Bessel function of the first kind. // (Needed to compute Kaiser window) // // y = sum( (x/(2*n))^2 ) // n */ #define BIZ_EPSILON 1E-21 // Max error acceptable static FLOAT_TYPE besselizero(FLOAT_TYPE x) { FLOAT_TYPE temp; FLOAT_TYPE sum = 1.0; FLOAT_TYPE u = 1.0; FLOAT_TYPE halfx = x/2.0; int n = 1; do { temp = halfx/(FLOAT_TYPE)n; u *=temp * temp; sum += u; n++; } while (u >= BIZ_EPSILON * sum); return sum; } /* // Kaiser // // n window length // w buffer for the window parameters // b beta parameter of Kaiser window, Beta >= 1 // // Beta trades the rejection of the low pass filter against the // transition width from passband to stop band. Larger Beta means a // slower transition and greater stop band rejection. See Rabiner and // Gold (Theory and Application of DSP) under Kaiser windows for more // about Beta. The following table from Rabiner and Gold gives some // feel for the effect of Beta: // // All ripples in dB, width of transition band = D*N where N = window // length // // BETA D PB RIP SB RIP // 2.120 1.50 +-0.27 -30 // 3.384 2.23 0.0864 -40 // 4.538 2.93 0.0274 -50 // 5.658 3.62 0.00868 -60 // 6.764 4.32 0.00275 -70 // 7.865 5.0 0.000868 -80 // 8.960 5.7 0.000275 -90 // 10.056 6.4 0.000087 -100 */ void af_window_kaiser(int n, FLOAT_TYPE* w, FLOAT_TYPE b) { FLOAT_TYPE tmp; FLOAT_TYPE k1 = 1.0/besselizero(b); int k2 = 1 - (n & 1); int end = (n + 1) >> 1; int i; // Calculate window coefficients for (i=0 ; i<end ; i++){ tmp = (FLOAT_TYPE)(2*i + k2) / ((FLOAT_TYPE)n - 1.0); w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp)); } }