Mercurial > mplayer.hg
view mp3lib/dct36.c @ 23928:c6becdb359d7
remove GNUism (case range)
author | ivo |
---|---|
date | Mon, 30 Jul 2007 18:48:03 +0000 |
parents | 0783dd397f74 |
children | 0f1b5b68af32 |
line wrap: on
line source
/* * Modified for use with MPlayer, for details see the changelog at * http://svn.mplayerhq.hu/mplayer/trunk/ * $Id$ */ /* // This is an optimized DCT from Jeff Tsay's maplay 1.2+ package. // Saved one multiplication by doing the 'twiddle factor' stuff // together with the window mul. (MH) // // This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the // 9 point IDCT needs to be reduced further. Unfortunately, I don't // know how to do that, because 9 is not an even number. - Jeff. // ////////////////////////////////////////////////////////////////// // // 9 Point Inverse Discrete Cosine Transform // // This piece of code is Copyright 1997 Mikko Tommila and is freely usable // by anybody. The algorithm itself is of course in the public domain. // // Again derived heuristically from the 9-point WFTA. // // The algorithm is optimized (?) for speed, not for small rounding errors or // good readability. // // 36 additions, 11 multiplications // // Again this is very likely sub-optimal. // // The code is optimized to use a minimum number of temporary variables, // so it should compile quite well even on 8-register Intel x86 processors. // This makes the code quite obfuscated and very difficult to understand. // // References: // [1] S. Winograd: "On Computing the Discrete Fourier Transform", // Mathematics of Computation, Volume 32, Number 141, January 1978, // Pages 175-199 */ /*------------------------------------------------------------------*/ /* */ /* Function: Calculation of the inverse MDCT */ /* */ /*------------------------------------------------------------------*/ static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf) { #ifdef NEW_DCT9 real tmp[18]; #endif { register real *in = inbuf; in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14]; in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11]; in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8]; in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5]; in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2]; in[2] +=in[1]; in[1] +=in[0]; in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9]; in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1]; #ifdef NEW_DCT9 { real t0, t1, t2, t3, t4, t5, t6, t7; t1 = COS6_2 * in[12]; t2 = COS6_2 * (in[8] + in[16] - in[4]); t3 = in[0] + t1; t4 = in[0] - t1 - t1; t5 = t4 - t2; t0 = cos9[0] * (in[4] + in[8]); t1 = cos9[1] * (in[8] - in[16]); tmp[4] = t4 + t2 + t2; t2 = cos9[2] * (in[4] + in[16]); t6 = t3 - t0 - t2; t0 += t3 + t1; t3 += t2 - t1; t2 = cos18[0] * (in[2] + in[10]); t4 = cos18[1] * (in[10] - in[14]); t7 = COS6_1 * in[6]; t1 = t2 + t4 + t7; tmp[0] = t0 + t1; tmp[8] = t0 - t1; t1 = cos18[2] * (in[2] + in[14]); t2 += t1 - t7; tmp[3] = t3 + t2; t0 = COS6_1 * (in[10] + in[14] - in[2]); tmp[5] = t3 - t2; t4 -= t1 + t7; tmp[1] = t5 - t0; tmp[7] = t5 + t0; tmp[2] = t6 + t4; tmp[6] = t6 - t4; } { real t0, t1, t2, t3, t4, t5, t6, t7; t1 = COS6_2 * in[13]; t2 = COS6_2 * (in[9] + in[17] - in[5]); t3 = in[1] + t1; t4 = in[1] - t1 - t1; t5 = t4 - t2; t0 = cos9[0] * (in[5] + in[9]); t1 = cos9[1] * (in[9] - in[17]); tmp[13] = (t4 + t2 + t2) * tfcos36[17-13]; t2 = cos9[2] * (in[5] + in[17]); t6 = t3 - t0 - t2; t0 += t3 + t1; t3 += t2 - t1; t2 = cos18[0] * (in[3] + in[11]); t4 = cos18[1] * (in[11] - in[15]); t7 = COS6_1 * in[7]; t1 = t2 + t4 + t7; tmp[17] = (t0 + t1) * tfcos36[17-17]; tmp[9] = (t0 - t1) * tfcos36[17-9]; t1 = cos18[2] * (in[3] + in[15]); t2 += t1 - t7; tmp[14] = (t3 + t2) * tfcos36[17-14]; t0 = COS6_1 * (in[11] + in[15] - in[3]); tmp[12] = (t3 - t2) * tfcos36[17-12]; t4 -= t1 + t7; tmp[16] = (t5 - t0) * tfcos36[17-16]; tmp[10] = (t5 + t0) * tfcos36[17-10]; tmp[15] = (t6 + t4) * tfcos36[17-15]; tmp[11] = (t6 - t4) * tfcos36[17-11]; } #define MACRO(v) { \ real tmpval; \ real sum0 = tmp[(v)]; \ real sum1 = tmp[17-(v)]; \ out2[9+(v)] = (tmpval = sum0 + sum1) * w[27+(v)]; \ out2[8-(v)] = tmpval * w[26-(v)]; \ sum0 -= sum1; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; } { register real *out2 = o2; register real *w = wintab; register real *out1 = o1; register real *ts = tsbuf; MACRO(0); MACRO(1); MACRO(2); MACRO(3); MACRO(4); MACRO(5); MACRO(6); MACRO(7); MACRO(8); } #else { #define MACRO0(v) { \ real tmp; \ out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \ out2[8-(v)] = tmp * w[26-(v)]; } \ sum0 -= sum1; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; #define MACRO1(v) { \ real sum0,sum1; \ sum0 = tmp1a + tmp2a; \ sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \ MACRO0(v); } #define MACRO2(v) { \ real sum0,sum1; \ sum0 = tmp2a - tmp1a; \ sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \ MACRO0(v); } register const real *c = COS9; register real *out2 = o2; register real *w = wintab; register real *out1 = o1; register real *ts = tsbuf; real ta33,ta66,tb33,tb66; ta33 = in[2*3+0] * c[3]; ta66 = in[2*6+0] * c[6]; tb33 = in[2*3+1] * c[3]; tb66 = in[2*6+1] * c[6]; { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7]; tmp1b = in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7]; tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8]; tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8]; MACRO1(0); MACRO2(8); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3]; tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3]; tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0]; tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1]; MACRO1(1); MACRO2(7); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1]; tmp1b = in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1]; tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4]; tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4]; MACRO1(2); MACRO2(6); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5]; tmp1b = in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5]; tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2]; tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2]; MACRO1(3); MACRO2(5); } { real sum0,sum1; sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0]; sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4]; MACRO0(4); } } #endif } }