Mercurial > mplayer.hg
view libfaad2/cfft.c @ 30953:d3f31670562d
Share more code between the two ATI fragment shader YUV to RGB
conversion methods and extend them to support more accurate
conversion (though at the cost of some speed).
author | reimar |
---|---|
date | Sun, 04 Apr 2010 11:45:05 +0000 |
parents | 59b6fa5b4201 |
children |
line wrap: on
line source
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: cfft.c,v 1.30 2004/09/08 09:43:11 gcp Exp $ **/ /* * Algorithmically based on Fortran-77 FFTPACK * by Paul N. Swarztrauber(Version 4, 1985). * * Does even sized fft only */ /* isign is +1 for backward and -1 for forward transforms */ #include "common.h" #include "structs.h" #include <stdlib.h> #include "cfft.h" #include "cfft_tab.h" /* static function declarations */ static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa); static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa); static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign); static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3, const complex_t *wa4, const int8_t isign); INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch, const uint16_t *ifac, const complex_t *wa, const int8_t isign); static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac); /*---------------------------------------------------------------------- passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd. ----------------------------------------------------------------------*/ static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa) { uint16_t i, k, ah, ac; if (ido == 1) { for (k = 0; k < l1; k++) { ah = 2*k; ac = 4*k; RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]); RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]); IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]); IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]); } } else { for (k = 0; k < l1; k++) { ah = k*ido; ac = 2*k*ido; for (i = 0; i < ido; i++) { complex_t t2; RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]); RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]); IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]); IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]); #if 1 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); #else ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); #endif } } } } static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa) { uint16_t i, k, ah, ac; if (ido == 1) { for (k = 0; k < l1; k++) { ah = 2*k; ac = 4*k; RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]); RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]); IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]); IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]); } } else { for (k = 0; k < l1; k++) { ah = k*ido; ac = 2*k*ido; for (i = 0; i < ido; i++) { complex_t t2; RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]); RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]); IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]); IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]); #if 1 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); #else ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); #endif } } } } static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign) { static real_t taur = FRAC_CONST(-0.5); static real_t taui = FRAC_CONST(0.866025403784439); uint16_t i, k, ac, ah; complex_t c2, c3, d2, d3, t2; if (ido == 1) { if (isign == 1) { for (k = 0; k < l1; k++) { ac = 3*k+1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+1]); IM(t2) = IM(cc[ac]) + IM(cc[ac+1]); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui); RE(ch[ah+l1]) = RE(c2) - IM(c3); IM(ch[ah+l1]) = IM(c2) + RE(c3); RE(ch[ah+2*l1]) = RE(c2) + IM(c3); IM(ch[ah+2*l1]) = IM(c2) - RE(c3); } } else { for (k = 0; k < l1; k++) { ac = 3*k+1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+1]); IM(t2) = IM(cc[ac]) + IM(cc[ac+1]); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui); RE(ch[ah+l1]) = RE(c2) + IM(c3); IM(ch[ah+l1]) = IM(c2) - RE(c3); RE(ch[ah+2*l1]) = RE(c2) - IM(c3); IM(ch[ah+2*l1]) = IM(c2) + RE(c3); } } } else { if (isign == 1) { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (3*k+1)*ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur); IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui); RE(d2) = RE(c2) - IM(c3); IM(d3) = IM(c2) - RE(c3); RE(d3) = RE(c2) + IM(c3); IM(d2) = IM(c2) + RE(c3); #if 1 ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); #else ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); #endif } } } else { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (3*k+1)*ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur); IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui); RE(d2) = RE(c2) + IM(c3); IM(d3) = IM(c2) + RE(c3); RE(d3) = RE(c2) - IM(c3); IM(d2) = IM(c2) - RE(c3); #if 1 ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); #else ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); #endif } } } } } static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3) { uint16_t i, k, ac, ah; if (ido == 1) { for (k = 0; k < l1; k++) { complex_t t1, t2, t3, t4; ac = 4*k; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+2]); RE(t1) = RE(cc[ac]) - RE(cc[ac+2]); IM(t2) = IM(cc[ac]) + IM(cc[ac+2]); IM(t1) = IM(cc[ac]) - IM(cc[ac+2]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]); IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]); IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]); RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]); RE(ch[ah]) = RE(t2) + RE(t3); RE(ch[ah+2*l1]) = RE(t2) - RE(t3); IM(ch[ah]) = IM(t2) + IM(t3); IM(ch[ah+2*l1]) = IM(t2) - IM(t3); RE(ch[ah+l1]) = RE(t1) + RE(t4); RE(ch[ah+3*l1]) = RE(t1) - RE(t4); IM(ch[ah+l1]) = IM(t1) + IM(t4); IM(ch[ah+3*l1]) = IM(t1) - IM(t4); } } else { for (k = 0; k < l1; k++) { ac = 4*k*ido; ah = k*ido; for (i = 0; i < ido; i++) { complex_t c2, c3, c4, t1, t2, t3, t4; RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]); RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]); IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]); IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]); RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]); IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]); IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]); RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]); RE(c2) = RE(t1) + RE(t4); RE(c4) = RE(t1) - RE(t4); IM(c2) = IM(t1) + IM(t4); IM(c4) = IM(t1) - IM(t4); RE(ch[ah+i]) = RE(t2) + RE(t3); RE(c3) = RE(t2) - RE(t3); IM(ch[ah+i]) = IM(t2) + IM(t3); IM(c3) = IM(t2) - IM(t3); #if 1 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]), IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]), IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); #else ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]), RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]), RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); #endif } } } } static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3) { uint16_t i, k, ac, ah; if (ido == 1) { for (k = 0; k < l1; k++) { complex_t t1, t2, t3, t4; ac = 4*k; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+2]); RE(t1) = RE(cc[ac]) - RE(cc[ac+2]); IM(t2) = IM(cc[ac]) + IM(cc[ac+2]); IM(t1) = IM(cc[ac]) - IM(cc[ac+2]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]); IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]); IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]); RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]); RE(ch[ah]) = RE(t2) + RE(t3); RE(ch[ah+2*l1]) = RE(t2) - RE(t3); IM(ch[ah]) = IM(t2) + IM(t3); IM(ch[ah+2*l1]) = IM(t2) - IM(t3); RE(ch[ah+l1]) = RE(t1) - RE(t4); RE(ch[ah+3*l1]) = RE(t1) + RE(t4); IM(ch[ah+l1]) = IM(t1) - IM(t4); IM(ch[ah+3*l1]) = IM(t1) + IM(t4); } } else { for (k = 0; k < l1; k++) { ac = 4*k*ido; ah = k*ido; for (i = 0; i < ido; i++) { complex_t c2, c3, c4, t1, t2, t3, t4; RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]); RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]); IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]); IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]); RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]); IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]); IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]); RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]); RE(c2) = RE(t1) - RE(t4); RE(c4) = RE(t1) + RE(t4); IM(c2) = IM(t1) - IM(t4); IM(c4) = IM(t1) + IM(t4); RE(ch[ah+i]) = RE(t2) + RE(t3); RE(c3) = RE(t2) - RE(t3); IM(ch[ah+i]) = IM(t2) + IM(t3); IM(c3) = IM(t2) - IM(t3); #if 1 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]), RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]), RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); #else ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]), IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]), IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); #endif } } } } static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3, const complex_t *wa4, const int8_t isign) { static real_t tr11 = FRAC_CONST(0.309016994374947); static real_t ti11 = FRAC_CONST(0.951056516295154); static real_t tr12 = FRAC_CONST(-0.809016994374947); static real_t ti12 = FRAC_CONST(0.587785252292473); uint16_t i, k, ac, ah; complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5; if (ido == 1) { if (isign == 1) { for (k = 0; k < l1; k++) { ac = 5*k + 1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+3]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]); IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]); RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]); IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3]); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c5), &RE(c4), ti11, ti12, RE(t5), RE(t4)); ComplexMult(&IM(c5), &IM(c4), ti11, ti12, IM(t5), IM(t4)); RE(ch[ah+l1]) = RE(c2) - IM(c5); IM(ch[ah+l1]) = IM(c2) + RE(c5); RE(ch[ah+2*l1]) = RE(c3) - IM(c4); IM(ch[ah+2*l1]) = IM(c3) + RE(c4); RE(ch[ah+3*l1]) = RE(c3) + IM(c4); IM(ch[ah+3*l1]) = IM(c3) - RE(c4); RE(ch[ah+4*l1]) = RE(c2) + IM(c5); IM(ch[ah+4*l1]) = IM(c2) - RE(c5); } } else { for (k = 0; k < l1; k++) { ac = 5*k + 1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+3]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]); IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]); RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]); IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3]); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c4), &RE(c5), ti12, ti11, RE(t5), RE(t4)); ComplexMult(&IM(c4), &IM(c5), ti12, ti12, IM(t5), IM(t4)); RE(ch[ah+l1]) = RE(c2) + IM(c5); IM(ch[ah+l1]) = IM(c2) - RE(c5); RE(ch[ah+2*l1]) = RE(c3) + IM(c4); IM(ch[ah+2*l1]) = IM(c3) - RE(c4); RE(ch[ah+3*l1]) = RE(c3) - IM(c4); IM(ch[ah+3*l1]) = IM(c3) + RE(c4); RE(ch[ah+4*l1]) = RE(c2) - IM(c5); IM(ch[ah+4*l1]) = IM(c2) + RE(c5); } } } else { if (isign == 1) { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (k*5 + 1) * ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]); RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]); IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]); RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]); IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c5), &RE(c4), ti11, ti12, RE(t5), RE(t4)); ComplexMult(&IM(c5), &IM(c4), ti11, ti12, IM(t5), IM(t4)); IM(d2) = IM(c2) + RE(c5); IM(d3) = IM(c3) + RE(c4); RE(d4) = RE(c3) + IM(c4); RE(d5) = RE(c2) + IM(c5); RE(d2) = RE(c2) - IM(c5); IM(d5) = IM(c2) - RE(c5); RE(d3) = RE(c3) - IM(c4); IM(d4) = IM(c3) - RE(c4); #if 1 ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]), IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]), IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); #else ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]), RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]), RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); #endif } } } else { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (k*5 + 1) * ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]); RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]); IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]); RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]); IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c4), &RE(c5), ti12, ti11, RE(t5), RE(t4)); ComplexMult(&IM(c4), &IM(c5), ti12, ti12, IM(t5), IM(t4)); IM(d2) = IM(c2) - RE(c5); IM(d3) = IM(c3) - RE(c4); RE(d4) = RE(c3) - IM(c4); RE(d5) = RE(c2) - IM(c5); RE(d2) = RE(c2) + IM(c5); IM(d5) = IM(c2) + RE(c5); RE(d3) = RE(c3) + IM(c4); IM(d4) = IM(c3) + RE(c4); #if 1 ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]), RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]), RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); #else ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]), IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]), IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); #endif } } } } } /*---------------------------------------------------------------------- cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs. ----------------------------------------------------------------------*/ static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch, const uint16_t *ifac, const complex_t *wa, const int8_t isign) { uint16_t i; uint16_t k1, l1, l2; uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; nf = ifac[1]; na = 0; l1 = 1; iw = 0; for (k1 = 2; k1 <= nf+1; k1++) { ip = ifac[k1]; l2 = ip*l1; ido = n / l2; idl1 = ido*l1; switch (ip) { case 4: ix2 = iw + ido; ix3 = ix2 + ido; if (na == 0) passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]); else passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]); na = 1 - na; break; case 2: if (na == 0) passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]); else passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]); na = 1 - na; break; case 3: ix2 = iw + ido; if (na == 0) passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign); else passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign); na = 1 - na; break; case 5: ix2 = iw + ido; ix3 = ix2 + ido; ix4 = ix3 + ido; if (na == 0) passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); else passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); na = 1 - na; break; } l1 = l2; iw += (ip-1) * ido; } if (na == 0) return; for (i = 0; i < n; i++) { RE(c[i]) = RE(ch[i]); IM(c[i]) = IM(ch[i]); } } static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch, const uint16_t *ifac, const complex_t *wa, const int8_t isign) { uint16_t i; uint16_t k1, l1, l2; uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; nf = ifac[1]; na = 0; l1 = 1; iw = 0; for (k1 = 2; k1 <= nf+1; k1++) { ip = ifac[k1]; l2 = ip*l1; ido = n / l2; idl1 = ido*l1; switch (ip) { case 4: ix2 = iw + ido; ix3 = ix2 + ido; if (na == 0) passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]); else passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]); na = 1 - na; break; case 2: if (na == 0) passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]); else passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]); na = 1 - na; break; case 3: ix2 = iw + ido; if (na == 0) passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign); else passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign); na = 1 - na; break; case 5: ix2 = iw + ido; ix3 = ix2 + ido; ix4 = ix3 + ido; if (na == 0) passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); else passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); na = 1 - na; break; } l1 = l2; iw += (ip-1) * ido; } if (na == 0) return; for (i = 0; i < n; i++) { RE(c[i]) = RE(ch[i]); IM(c[i]) = IM(ch[i]); } } void cfftf(cfft_info *cfft, complex_t *c) { cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1); } void cfftb(cfft_info *cfft, complex_t *c) { cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1); } static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac) { static uint16_t ntryh[4] = {3, 4, 2, 5}; #ifndef FIXED_POINT real_t arg, argh, argld, fi; uint16_t ido, ipm; uint16_t i1, k1, l1, l2; uint16_t ld, ii, ip; #endif uint16_t ntry = 0, i, j; uint16_t ib; uint16_t nf, nl, nq, nr; nl = n; nf = 0; j = 0; startloop: j++; if (j <= 4) ntry = ntryh[j-1]; else ntry += 2; do { nq = nl / ntry; nr = nl - ntry*nq; if (nr != 0) goto startloop; nf++; ifac[nf+1] = ntry; nl = nq; if (ntry == 2 && nf != 1) { for (i = 2; i <= nf; i++) { ib = nf - i + 2; ifac[ib+1] = ifac[ib]; } ifac[2] = 2; } } while (nl != 1); ifac[0] = n; ifac[1] = nf; #ifndef FIXED_POINT argh = (real_t)2.0*(real_t)M_PI / (real_t)n; i = 0; l1 = 1; for (k1 = 1; k1 <= nf; k1++) { ip = ifac[k1+1]; ld = 0; l2 = l1*ip; ido = n / l2; ipm = ip - 1; for (j = 0; j < ipm; j++) { i1 = i; RE(wa[i]) = 1.0; IM(wa[i]) = 0.0; ld += l1; fi = 0; argld = ld*argh; for (ii = 0; ii < ido; ii++) { i++; fi++; arg = fi * argld; RE(wa[i]) = (real_t)cos(arg); #if 1 IM(wa[i]) = (real_t)sin(arg); #else IM(wa[i]) = (real_t)-sin(arg); #endif } if (ip > 5) { RE(wa[i1]) = RE(wa[i]); IM(wa[i1]) = IM(wa[i]); } } l1 = l2; } #endif } cfft_info *cffti(uint16_t n) { cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info)); cfft->n = n; cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t)); #ifndef FIXED_POINT cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t)); cffti1(n, cfft->tab, cfft->ifac); #else cffti1(n, NULL, cfft->ifac); switch (n) { case 64: cfft->tab = (complex_t*)cfft_tab_64; break; case 512: cfft->tab = (complex_t*)cfft_tab_512; break; #ifdef LD_DEC case 256: cfft->tab = (complex_t*)cfft_tab_256; break; #endif #ifdef ALLOW_SMALL_FRAMELENGTH case 60: cfft->tab = (complex_t*)cfft_tab_60; break; case 480: cfft->tab = (complex_t*)cfft_tab_480; break; #ifdef LD_DEC case 240: cfft->tab = (complex_t*)cfft_tab_240; break; #endif #endif case 128: cfft->tab = (complex_t*)cfft_tab_128; break; } #endif return cfft; } void cfftu(cfft_info *cfft) { if (cfft->work) faad_free(cfft->work); #ifndef FIXED_POINT if (cfft->tab) faad_free(cfft->tab); #endif if (cfft) faad_free(cfft); }