Mercurial > mplayer.hg
view libfaad2/cfft.c @ 21032:ddc587b1fd8b
Support multiple subs in mov
author | reimar |
---|---|
date | Sun, 19 Nov 2006 11:55:03 +0000 |
parents | 59b6fa5b4201 |
children |
line wrap: on
line source
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: cfft.c,v 1.30 2004/09/08 09:43:11 gcp Exp $ **/ /* * Algorithmically based on Fortran-77 FFTPACK * by Paul N. Swarztrauber(Version 4, 1985). * * Does even sized fft only */ /* isign is +1 for backward and -1 for forward transforms */ #include "common.h" #include "structs.h" #include <stdlib.h> #include "cfft.h" #include "cfft_tab.h" /* static function declarations */ static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa); static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa); static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign); static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3, const complex_t *wa4, const int8_t isign); INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch, const uint16_t *ifac, const complex_t *wa, const int8_t isign); static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac); /*---------------------------------------------------------------------- passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd. ----------------------------------------------------------------------*/ static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa) { uint16_t i, k, ah, ac; if (ido == 1) { for (k = 0; k < l1; k++) { ah = 2*k; ac = 4*k; RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]); RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]); IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]); IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]); } } else { for (k = 0; k < l1; k++) { ah = k*ido; ac = 2*k*ido; for (i = 0; i < ido; i++) { complex_t t2; RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]); RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]); IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]); IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]); #if 1 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); #else ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); #endif } } } } static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa) { uint16_t i, k, ah, ac; if (ido == 1) { for (k = 0; k < l1; k++) { ah = 2*k; ac = 4*k; RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]); RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]); IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]); IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]); } } else { for (k = 0; k < l1; k++) { ah = k*ido; ac = 2*k*ido; for (i = 0; i < ido; i++) { complex_t t2; RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]); RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]); IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]); IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]); #if 1 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); #else ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); #endif } } } } static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign) { static real_t taur = FRAC_CONST(-0.5); static real_t taui = FRAC_CONST(0.866025403784439); uint16_t i, k, ac, ah; complex_t c2, c3, d2, d3, t2; if (ido == 1) { if (isign == 1) { for (k = 0; k < l1; k++) { ac = 3*k+1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+1]); IM(t2) = IM(cc[ac]) + IM(cc[ac+1]); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui); RE(ch[ah+l1]) = RE(c2) - IM(c3); IM(ch[ah+l1]) = IM(c2) + RE(c3); RE(ch[ah+2*l1]) = RE(c2) + IM(c3); IM(ch[ah+2*l1]) = IM(c2) - RE(c3); } } else { for (k = 0; k < l1; k++) { ac = 3*k+1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+1]); IM(t2) = IM(cc[ac]) + IM(cc[ac+1]); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui); RE(ch[ah+l1]) = RE(c2) + IM(c3); IM(ch[ah+l1]) = IM(c2) - RE(c3); RE(ch[ah+2*l1]) = RE(c2) - IM(c3); IM(ch[ah+2*l1]) = IM(c2) + RE(c3); } } } else { if (isign == 1) { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (3*k+1)*ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur); IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui); RE(d2) = RE(c2) - IM(c3); IM(d3) = IM(c2) - RE(c3); RE(d3) = RE(c2) + IM(c3); IM(d2) = IM(c2) + RE(c3); #if 1 ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); #else ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); #endif } } } else { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (3*k+1)*ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur); IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2); RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui); IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui); RE(d2) = RE(c2) + IM(c3); IM(d3) = IM(c2) + RE(c3); RE(d3) = RE(c2) - IM(c3); IM(d2) = IM(c2) - RE(c3); #if 1 ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); #else ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); #endif } } } } } static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3) { uint16_t i, k, ac, ah; if (ido == 1) { for (k = 0; k < l1; k++) { complex_t t1, t2, t3, t4; ac = 4*k; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+2]); RE(t1) = RE(cc[ac]) - RE(cc[ac+2]); IM(t2) = IM(cc[ac]) + IM(cc[ac+2]); IM(t1) = IM(cc[ac]) - IM(cc[ac+2]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]); IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]); IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]); RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]); RE(ch[ah]) = RE(t2) + RE(t3); RE(ch[ah+2*l1]) = RE(t2) - RE(t3); IM(ch[ah]) = IM(t2) + IM(t3); IM(ch[ah+2*l1]) = IM(t2) - IM(t3); RE(ch[ah+l1]) = RE(t1) + RE(t4); RE(ch[ah+3*l1]) = RE(t1) - RE(t4); IM(ch[ah+l1]) = IM(t1) + IM(t4); IM(ch[ah+3*l1]) = IM(t1) - IM(t4); } } else { for (k = 0; k < l1; k++) { ac = 4*k*ido; ah = k*ido; for (i = 0; i < ido; i++) { complex_t c2, c3, c4, t1, t2, t3, t4; RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]); RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]); IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]); IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]); RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]); IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]); IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]); RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]); RE(c2) = RE(t1) + RE(t4); RE(c4) = RE(t1) - RE(t4); IM(c2) = IM(t1) + IM(t4); IM(c4) = IM(t1) - IM(t4); RE(ch[ah+i]) = RE(t2) + RE(t3); RE(c3) = RE(t2) - RE(t3); IM(ch[ah+i]) = IM(t2) + IM(t3); IM(c3) = IM(t2) - IM(t3); #if 1 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]), IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]), IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); #else ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]), RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]), RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); #endif } } } } static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3) { uint16_t i, k, ac, ah; if (ido == 1) { for (k = 0; k < l1; k++) { complex_t t1, t2, t3, t4; ac = 4*k; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+2]); RE(t1) = RE(cc[ac]) - RE(cc[ac+2]); IM(t2) = IM(cc[ac]) + IM(cc[ac+2]); IM(t1) = IM(cc[ac]) - IM(cc[ac+2]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]); IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]); IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]); RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]); RE(ch[ah]) = RE(t2) + RE(t3); RE(ch[ah+2*l1]) = RE(t2) - RE(t3); IM(ch[ah]) = IM(t2) + IM(t3); IM(ch[ah+2*l1]) = IM(t2) - IM(t3); RE(ch[ah+l1]) = RE(t1) - RE(t4); RE(ch[ah+3*l1]) = RE(t1) + RE(t4); IM(ch[ah+l1]) = IM(t1) - IM(t4); IM(ch[ah+3*l1]) = IM(t1) + IM(t4); } } else { for (k = 0; k < l1; k++) { ac = 4*k*ido; ah = k*ido; for (i = 0; i < ido; i++) { complex_t c2, c3, c4, t1, t2, t3, t4; RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]); RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]); IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]); IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]); RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]); IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]); IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]); RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]); RE(c2) = RE(t1) - RE(t4); RE(c4) = RE(t1) + RE(t4); IM(c2) = IM(t1) - IM(t4); IM(c4) = IM(t1) + IM(t4); RE(ch[ah+i]) = RE(t2) + RE(t3); RE(c3) = RE(t2) - RE(t3); IM(ch[ah+i]) = IM(t2) + IM(t3); IM(c3) = IM(t2) - IM(t3); #if 1 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]), RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]), RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]), RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); #else ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]), IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]), IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]), IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); #endif } } } } static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3, const complex_t *wa4, const int8_t isign) { static real_t tr11 = FRAC_CONST(0.309016994374947); static real_t ti11 = FRAC_CONST(0.951056516295154); static real_t tr12 = FRAC_CONST(-0.809016994374947); static real_t ti12 = FRAC_CONST(0.587785252292473); uint16_t i, k, ac, ah; complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5; if (ido == 1) { if (isign == 1) { for (k = 0; k < l1; k++) { ac = 5*k + 1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+3]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]); IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]); RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]); IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3]); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c5), &RE(c4), ti11, ti12, RE(t5), RE(t4)); ComplexMult(&IM(c5), &IM(c4), ti11, ti12, IM(t5), IM(t4)); RE(ch[ah+l1]) = RE(c2) - IM(c5); IM(ch[ah+l1]) = IM(c2) + RE(c5); RE(ch[ah+2*l1]) = RE(c3) - IM(c4); IM(ch[ah+2*l1]) = IM(c3) + RE(c4); RE(ch[ah+3*l1]) = RE(c3) + IM(c4); IM(ch[ah+3*l1]) = IM(c3) - RE(c4); RE(ch[ah+4*l1]) = RE(c2) + IM(c5); IM(ch[ah+4*l1]) = IM(c2) - RE(c5); } } else { for (k = 0; k < l1; k++) { ac = 5*k + 1; ah = k; RE(t2) = RE(cc[ac]) + RE(cc[ac+3]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3]); RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]); IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]); RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]); IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3]); RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c4), &RE(c5), ti12, ti11, RE(t5), RE(t4)); ComplexMult(&IM(c4), &IM(c5), ti12, ti12, IM(t5), IM(t4)); RE(ch[ah+l1]) = RE(c2) + IM(c5); IM(ch[ah+l1]) = IM(c2) - RE(c5); RE(ch[ah+2*l1]) = RE(c3) + IM(c4); IM(ch[ah+2*l1]) = IM(c3) - RE(c4); RE(ch[ah+3*l1]) = RE(c3) - IM(c4); IM(ch[ah+3*l1]) = IM(c3) + RE(c4); RE(ch[ah+4*l1]) = RE(c2) - IM(c5); IM(ch[ah+4*l1]) = IM(c2) + RE(c5); } } } else { if (isign == 1) { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (k*5 + 1) * ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]); RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]); IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]); RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]); IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c5), &RE(c4), ti11, ti12, RE(t5), RE(t4)); ComplexMult(&IM(c5), &IM(c4), ti11, ti12, IM(t5), IM(t4)); IM(d2) = IM(c2) + RE(c5); IM(d3) = IM(c3) + RE(c4); RE(d4) = RE(c3) + IM(c4); RE(d5) = RE(c2) + IM(c5); RE(d2) = RE(c2) - IM(c5); IM(d5) = IM(c2) - RE(c5); RE(d3) = RE(c3) - IM(c4); IM(d4) = IM(c3) - RE(c4); #if 1 ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]), IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]), IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); #else ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]), RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]), RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); #endif } } } else { for (k = 0; k < l1; k++) { for (i = 0; i < ido; i++) { ac = i + (k*5 + 1) * ido; ah = i + k * ido; RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]); IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]); RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]); IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]); RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]); IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]); RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]); IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]); RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3); IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3); RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12); IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12); RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11); IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11); ComplexMult(&RE(c4), &RE(c5), ti12, ti11, RE(t5), RE(t4)); ComplexMult(&IM(c4), &IM(c5), ti12, ti12, IM(t5), IM(t4)); IM(d2) = IM(c2) - RE(c5); IM(d3) = IM(c3) - RE(c4); RE(d4) = RE(c3) - IM(c4); RE(d5) = RE(c2) - IM(c5); RE(d2) = RE(c2) + IM(c5); IM(d5) = IM(c2) + RE(c5); RE(d3) = RE(c3) + IM(c4); IM(d4) = IM(c3) + RE(c4); #if 1 ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]), RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]), RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]), RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]), RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); #else ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]), IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]), IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]), IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i])); ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]), IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); #endif } } } } } /*---------------------------------------------------------------------- cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs. ----------------------------------------------------------------------*/ static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch, const uint16_t *ifac, const complex_t *wa, const int8_t isign) { uint16_t i; uint16_t k1, l1, l2; uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; nf = ifac[1]; na = 0; l1 = 1; iw = 0; for (k1 = 2; k1 <= nf+1; k1++) { ip = ifac[k1]; l2 = ip*l1; ido = n / l2; idl1 = ido*l1; switch (ip) { case 4: ix2 = iw + ido; ix3 = ix2 + ido; if (na == 0) passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]); else passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]); na = 1 - na; break; case 2: if (na == 0) passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]); else passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]); na = 1 - na; break; case 3: ix2 = iw + ido; if (na == 0) passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign); else passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign); na = 1 - na; break; case 5: ix2 = iw + ido; ix3 = ix2 + ido; ix4 = ix3 + ido; if (na == 0) passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); else passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); na = 1 - na; break; } l1 = l2; iw += (ip-1) * ido; } if (na == 0) return; for (i = 0; i < n; i++) { RE(c[i]) = RE(ch[i]); IM(c[i]) = IM(ch[i]); } } static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch, const uint16_t *ifac, const complex_t *wa, const int8_t isign) { uint16_t i; uint16_t k1, l1, l2; uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; nf = ifac[1]; na = 0; l1 = 1; iw = 0; for (k1 = 2; k1 <= nf+1; k1++) { ip = ifac[k1]; l2 = ip*l1; ido = n / l2; idl1 = ido*l1; switch (ip) { case 4: ix2 = iw + ido; ix3 = ix2 + ido; if (na == 0) passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]); else passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]); na = 1 - na; break; case 2: if (na == 0) passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]); else passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]); na = 1 - na; break; case 3: ix2 = iw + ido; if (na == 0) passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign); else passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign); na = 1 - na; break; case 5: ix2 = iw + ido; ix3 = ix2 + ido; ix4 = ix3 + ido; if (na == 0) passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); else passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); na = 1 - na; break; } l1 = l2; iw += (ip-1) * ido; } if (na == 0) return; for (i = 0; i < n; i++) { RE(c[i]) = RE(ch[i]); IM(c[i]) = IM(ch[i]); } } void cfftf(cfft_info *cfft, complex_t *c) { cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1); } void cfftb(cfft_info *cfft, complex_t *c) { cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1); } static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac) { static uint16_t ntryh[4] = {3, 4, 2, 5}; #ifndef FIXED_POINT real_t arg, argh, argld, fi; uint16_t ido, ipm; uint16_t i1, k1, l1, l2; uint16_t ld, ii, ip; #endif uint16_t ntry = 0, i, j; uint16_t ib; uint16_t nf, nl, nq, nr; nl = n; nf = 0; j = 0; startloop: j++; if (j <= 4) ntry = ntryh[j-1]; else ntry += 2; do { nq = nl / ntry; nr = nl - ntry*nq; if (nr != 0) goto startloop; nf++; ifac[nf+1] = ntry; nl = nq; if (ntry == 2 && nf != 1) { for (i = 2; i <= nf; i++) { ib = nf - i + 2; ifac[ib+1] = ifac[ib]; } ifac[2] = 2; } } while (nl != 1); ifac[0] = n; ifac[1] = nf; #ifndef FIXED_POINT argh = (real_t)2.0*(real_t)M_PI / (real_t)n; i = 0; l1 = 1; for (k1 = 1; k1 <= nf; k1++) { ip = ifac[k1+1]; ld = 0; l2 = l1*ip; ido = n / l2; ipm = ip - 1; for (j = 0; j < ipm; j++) { i1 = i; RE(wa[i]) = 1.0; IM(wa[i]) = 0.0; ld += l1; fi = 0; argld = ld*argh; for (ii = 0; ii < ido; ii++) { i++; fi++; arg = fi * argld; RE(wa[i]) = (real_t)cos(arg); #if 1 IM(wa[i]) = (real_t)sin(arg); #else IM(wa[i]) = (real_t)-sin(arg); #endif } if (ip > 5) { RE(wa[i1]) = RE(wa[i]); IM(wa[i1]) = IM(wa[i]); } } l1 = l2; } #endif } cfft_info *cffti(uint16_t n) { cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info)); cfft->n = n; cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t)); #ifndef FIXED_POINT cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t)); cffti1(n, cfft->tab, cfft->ifac); #else cffti1(n, NULL, cfft->ifac); switch (n) { case 64: cfft->tab = (complex_t*)cfft_tab_64; break; case 512: cfft->tab = (complex_t*)cfft_tab_512; break; #ifdef LD_DEC case 256: cfft->tab = (complex_t*)cfft_tab_256; break; #endif #ifdef ALLOW_SMALL_FRAMELENGTH case 60: cfft->tab = (complex_t*)cfft_tab_60; break; case 480: cfft->tab = (complex_t*)cfft_tab_480; break; #ifdef LD_DEC case 240: cfft->tab = (complex_t*)cfft_tab_240; break; #endif #endif case 128: cfft->tab = (complex_t*)cfft_tab_128; break; } #endif return cfft; } void cfftu(cfft_info *cfft) { if (cfft->work) faad_free(cfft->work); #ifndef FIXED_POINT if (cfft->tab) faad_free(cfft->tab); #endif if (cfft) faad_free(cfft); }