Mercurial > mplayer.hg
view liba52/srfftp.h @ 15721:eec6ace22741
small change to field-matching metrics which hopefully makes a big
improvement to results. inter-field comparison is now counterbalanced
with intra-field total (vertical) variation. this means that areas of
extreme high frequency content, which become aliased within individual
fields, will not interfere with field matching. examples: white noise
effects, small kanji, very small latin text, ...
may still need tweaking. please report regressions. this change will
likely be made optional in the future (right now it's enclosed in
"if (1)"...
author | rfelker |
---|---|
date | Tue, 14 Jun 2005 05:33:34 +0000 |
parents | 0410677eda4a |
children | e83eef58b30a |
line wrap: on
line source
/* * srfftp.h * * Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000 * * 64 and 128 point split radix fft for ac3dec * * The algorithm is desribed in the book: * "Computational Frameworks of the Fast Fourier Transform". * * The ideas and the the organization of code borrowed from djbfft written by * D. J. Bernstein <djb@cr.py.to>. djbff can be found at * http://cr.yp.to/djbfft.html. * * srfftp.h is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * srfftp.h is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #ifndef SRFFTP_H__ #define SRFFTP_H__ static complex_t delta16[4] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.92387953251129, -0.38268343236509}, {0.70710678118655, -0.70710678118655}, {0.38268343236509, -0.92387953251129}}; static complex_t delta16_3[4] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.38268343236509, -0.92387953251129}, {-0.70710678118655, -0.70710678118655}, {-0.92387953251129, 0.38268343236509}}; static complex_t delta32[8] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.98078528040323, -0.19509032201613}, {0.92387953251129, -0.38268343236509}, {0.83146961230255, -0.55557023301960}, {0.70710678118655, -0.70710678118655}, {0.55557023301960, -0.83146961230255}, {0.38268343236509, -0.92387953251129}, {0.19509032201613, -0.98078528040323}}; static complex_t delta32_3[8] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.83146961230255, -0.55557023301960}, {0.38268343236509, -0.92387953251129}, {-0.19509032201613, -0.98078528040323}, {-0.70710678118655, -0.70710678118655}, {-0.98078528040323, -0.19509032201613}, {-0.92387953251129, 0.38268343236509}, {-0.55557023301960, 0.83146961230255}}; static complex_t delta64[16] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.99518472667220, -0.09801714032956}, {0.98078528040323, -0.19509032201613}, {0.95694033573221, -0.29028467725446}, {0.92387953251129, -0.38268343236509}, {0.88192126434836, -0.47139673682600}, {0.83146961230255, -0.55557023301960}, {0.77301045336274, -0.63439328416365}, {0.70710678118655, -0.70710678118655}, {0.63439328416365, -0.77301045336274}, {0.55557023301960, -0.83146961230255}, {0.47139673682600, -0.88192126434835}, {0.38268343236509, -0.92387953251129}, {0.29028467725446, -0.95694033573221}, {0.19509032201613, -0.98078528040323}, {0.09801714032956, -0.99518472667220}}; static complex_t delta64_3[16] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.95694033573221, -0.29028467725446}, {0.83146961230255, -0.55557023301960}, {0.63439328416365, -0.77301045336274}, {0.38268343236509, -0.92387953251129}, {0.09801714032956, -0.99518472667220}, {-0.19509032201613, -0.98078528040323}, {-0.47139673682600, -0.88192126434836}, {-0.70710678118655, -0.70710678118655}, {-0.88192126434835, -0.47139673682600}, {-0.98078528040323, -0.19509032201613}, {-0.99518472667220, 0.09801714032956}, {-0.92387953251129, 0.38268343236509}, {-0.77301045336274, 0.63439328416365}, {-0.55557023301960, 0.83146961230255}, {-0.29028467725446, 0.95694033573221}}; static complex_t delta128[32] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.99879545620517, -0.04906767432742}, {0.99518472667220, -0.09801714032956}, {0.98917650996478, -0.14673047445536}, {0.98078528040323, -0.19509032201613}, {0.97003125319454, -0.24298017990326}, {0.95694033573221, -0.29028467725446}, {0.94154406518302, -0.33688985339222}, {0.92387953251129, -0.38268343236509}, {0.90398929312344, -0.42755509343028}, {0.88192126434836, -0.47139673682600}, {0.85772861000027, -0.51410274419322}, {0.83146961230255, -0.55557023301960}, {0.80320753148064, -0.59569930449243}, {0.77301045336274, -0.63439328416365}, {0.74095112535496, -0.67155895484702}, {0.70710678118655, -0.70710678118655}, {0.67155895484702, -0.74095112535496}, {0.63439328416365, -0.77301045336274}, {0.59569930449243, -0.80320753148064}, {0.55557023301960, -0.83146961230255}, {0.51410274419322, -0.85772861000027}, {0.47139673682600, -0.88192126434835}, {0.42755509343028, -0.90398929312344}, {0.38268343236509, -0.92387953251129}, {0.33688985339222, -0.94154406518302}, {0.29028467725446, -0.95694033573221}, {0.24298017990326, -0.97003125319454}, {0.19509032201613, -0.98078528040323}, {0.14673047445536, -0.98917650996478}, {0.09801714032956, -0.99518472667220}, {0.04906767432742, -0.99879545620517}}; static complex_t delta128_3[32] __attribute__((aligned(16))) = { {1.00000000000000, 0.00000000000000}, {0.98917650996478, -0.14673047445536}, {0.95694033573221, -0.29028467725446}, {0.90398929312344, -0.42755509343028}, {0.83146961230255, -0.55557023301960}, {0.74095112535496, -0.67155895484702}, {0.63439328416365, -0.77301045336274}, {0.51410274419322, -0.85772861000027}, {0.38268343236509, -0.92387953251129}, {0.24298017990326, -0.97003125319454}, {0.09801714032956, -0.99518472667220}, {-0.04906767432742, -0.99879545620517}, {-0.19509032201613, -0.98078528040323}, {-0.33688985339222, -0.94154406518302}, {-0.47139673682600, -0.88192126434836}, {-0.59569930449243, -0.80320753148065}, {-0.70710678118655, -0.70710678118655}, {-0.80320753148065, -0.59569930449243}, {-0.88192126434835, -0.47139673682600}, {-0.94154406518302, -0.33688985339222}, {-0.98078528040323, -0.19509032201613}, {-0.99879545620517, -0.04906767432742}, {-0.99518472667220, 0.09801714032956}, {-0.97003125319454, 0.24298017990326}, {-0.92387953251129, 0.38268343236509}, {-0.85772861000027, 0.51410274419322}, {-0.77301045336274, 0.63439328416365}, {-0.67155895484702, 0.74095112535496}, {-0.55557023301960, 0.83146961230255}, {-0.42755509343028, 0.90398929312344}, {-0.29028467725446, 0.95694033573221}, {-0.14673047445536, 0.98917650996478}}; #define HSQRT2 0.707106781188; #define TRANSZERO(A0,A4,A8,A12) { \ u_r = wTB[0].real; \ v_i = u_r - wTB[k*2].real; \ u_r += wTB[k*2].real; \ u_i = wTB[0].imag; \ v_r = wTB[k*2].imag - u_i; \ u_i += wTB[k*2].imag; \ a_r = A0.real; \ a_i = A0.imag; \ a1_r = a_r; \ a1_r += u_r; \ A0.real = a1_r; \ a_r -= u_r; \ A8.real = a_r; \ a1_i = a_i; \ a1_i += u_i; \ A0.imag = a1_i; \ a_i -= u_i; \ A8.imag = a_i; \ a1_r = A4.real; \ a1_i = A4.imag; \ a_r = a1_r; \ a_r -= v_r; \ A4.real = a_r; \ a1_r += v_r; \ A12.real = a1_r; \ a_i = a1_i; \ a_i -= v_i; \ A4.imag = a_i; \ a1_i += v_i; \ A12.imag = a1_i; \ } #define TRANSHALF_16(A2,A6,A10,A14) {\ u_r = wTB[2].real; \ a_r = u_r; \ u_i = wTB[2].imag; \ u_r += u_i; \ u_i -= a_r; \ a_r = wTB[6].real; \ a1_r = a_r; \ a_i = wTB[6].imag; \ a_r = a_i - a_r; \ a_i += a1_r; \ v_i = u_r - a_r; \ u_r += a_r; \ v_r = u_i + a_i; \ u_i -= a_i; \ v_i *= HSQRT2; \ v_r *= HSQRT2; \ u_r *= HSQRT2; \ u_i *= HSQRT2; \ a_r = A2.real; \ a_i = A2.imag; \ a1_r = a_r; \ a1_r += u_r; \ A2.real = a1_r; \ a_r -= u_r; \ A10.real = a_r; \ a1_i = a_i; \ a1_i += u_i; \ A2.imag = a1_i; \ a_i -= u_i; \ A10.imag = a_i; \ a1_r = A6.real; \ a1_i = A6.imag; \ a_r = a1_r; \ a1_r += v_r; \ A6.real = a1_r; \ a_r -= v_r; \ A14.real = a_r; \ a_i = a1_i; \ a1_i -= v_i; \ A6.imag = a1_i; \ a_i += v_i; \ A14.imag = a_i; \ } #define TRANS(A1,A5,A9,A13,WT,WB,D,D3) { \ u_r = WT.real; \ a_r = u_r; \ a_r *= D.imag; \ u_r *= D.real; \ a_i = WT.imag; \ a1_i = a_i; \ a1_i *= D.real; \ a_i *= D.imag; \ u_r -= a_i; \ u_i = a_r; \ u_i += a1_i; \ a_r = WB.real; \ a1_r = a_r; \ a1_r *= D3.real; \ a_r *= D3.imag; \ a_i = WB.imag; \ a1_i = a_i; \ a_i *= D3.real; \ a1_i *= D3.imag; \ a1_r -= a1_i; \ a_r += a_i; \ v_i = u_r - a1_r; \ u_r += a1_r; \ v_r = a_r - u_i; \ u_i += a_r; \ a_r = A1.real; \ a_i = A1.imag; \ a1_r = a_r; \ a1_r += u_r; \ A1.real = a1_r; \ a_r -= u_r; \ A9.real = a_r; \ a1_i = a_i; \ a1_i += u_i; \ A1.imag = a1_i; \ a_i -= u_i; \ A9.imag = a_i; \ a1_r = A5.real; \ a1_i = A5.imag; \ a_r = a1_r; \ a1_r -= v_r; \ A5.real = a1_r; \ a_r += v_r; \ A13.real = a_r; \ a_i = a1_i; \ a1_i -= v_i; \ A5.imag = a1_i; \ a_i += v_i; \ A13.imag = a_i; \ } #endif