Mercurial > mplayer.hg
view libao2/remez.c @ 7404:f0dacd58604f
prefer ffsvq1 if available
author | arpi |
---|---|
date | Sun, 15 Sep 2002 14:20:24 +0000 |
parents | b608086bf84e |
children |
line wrap: on
line source
/************************************************************************** * Parks-McClellan algorithm for FIR filter design (C version) *------------------------------------------------- * Copyright (c) 1995,1998 Jake Janovetz (janovetz@uiuc.edu) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *************************************************************************/ #include "config.h" #include "remez.h" #include <stdio.h> #ifdef HAVE_MALLOC_H #include <malloc.h> #endif #include <stdlib.h> #include <math.h> /******************* * CreateDenseGrid *================= * Creates the dense grid of frequencies from the specified bands. * Also creates the Desired Frequency Response function (D[]) and * the Weight function (W[]) on that dense grid * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int numtaps - Number of taps in the resulting filter * int numband - Number of bands in user specification * double bands[] - User-specified band edges [2*numband] * double des[] - Desired response per band [numband] * double weight[] - Weight per band [numband] * int symmetry - Symmetry of filter - used for grid check * * OUTPUT: * ------- * int gridsize - Number of elements in the dense frequency grid * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the dense grid [gridsize] *******************/ void CreateDenseGrid(int r, int numtaps, int numband, double bands[], double des[], double weight[], int *gridsize, double Grid[], double D[], double W[], int symmetry) { int i, j, k, band; double delf, lowf, highf; delf = 0.5/(GRIDDENSITY*r); /* * For differentiator, hilbert, * symmetry is odd and Grid[0] = max(delf, band[0]) */ if ((symmetry == NEGATIVE) && (delf > bands[0])) bands[0] = delf; j=0; for (band=0; band < numband; band++) { Grid[j] = bands[2*band]; lowf = bands[2*band]; highf = bands[2*band + 1]; k = (int)((highf - lowf)/delf + 0.5); /* .5 for rounding */ for (i=0; i<k; i++) { D[j] = des[band]; W[j] = weight[band]; Grid[j] = lowf; lowf += delf; j++; } Grid[j-1] = highf; } /* * Similar to above, if odd symmetry, last grid point can't be .5 * - but, if there are even taps, leave the last grid point at .5 */ if ((symmetry == NEGATIVE) && (Grid[*gridsize-1] > (0.5 - delf)) && (numtaps % 2)) { Grid[*gridsize-1] = 0.5-delf; } } /******************** * InitialGuess *============== * Places Extremal Frequencies evenly throughout the dense grid. * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int gridsize - Number of elements in the dense frequency grid * * OUTPUT: * ------- * int Ext[] - Extremal indexes to dense frequency grid [r+1] ********************/ void InitialGuess(int r, int Ext[], int gridsize) { int i; for (i=0; i<=r; i++) Ext[i] = i * (gridsize-1) / r; } /*********************** * CalcParms *=========== * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int Ext[] - Extremal indexes to dense frequency grid [r+1] * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the dense grid [gridsize] * * OUTPUT: * ------- * double ad[] - 'b' in Oppenheim & Schafer [r+1] * double x[] - [r+1] * double y[] - 'C' in Oppenheim & Schafer [r+1] ***********************/ void CalcParms(int r, int Ext[], double Grid[], double D[], double W[], double ad[], double x[], double y[]) { int i, j, k, ld; double sign, xi, delta, denom, numer; /* * Find x[] */ for (i=0; i<=r; i++) x[i] = cos(Pi2 * Grid[Ext[i]]); /* * Calculate ad[] - Oppenheim & Schafer eq 7.132 */ ld = (r-1)/15 + 1; /* Skips around to avoid round errors */ for (i=0; i<=r; i++) { denom = 1.0; xi = x[i]; for (j=0; j<ld; j++) { for (k=j; k<=r; k+=ld) if (k != i) denom *= 2.0*(xi - x[k]); } if (fabs(denom)<0.00001) denom = 0.00001; ad[i] = 1.0/denom; } /* * Calculate delta - Oppenheim & Schafer eq 7.131 */ numer = denom = 0; sign = 1; for (i=0; i<=r; i++) { numer += ad[i] * D[Ext[i]]; denom += sign * ad[i]/W[Ext[i]]; sign = -sign; } delta = numer/denom; sign = 1; /* * Calculate y[] - Oppenheim & Schafer eq 7.133b */ for (i=0; i<=r; i++) { y[i] = D[Ext[i]] - sign * delta/W[Ext[i]]; sign = -sign; } } /********************* * ComputeA *========== * Using values calculated in CalcParms, ComputeA calculates the * actual filter response at a given frequency (freq). Uses * eq 7.133a from Oppenheim & Schafer. * * * INPUT: * ------ * double freq - Frequency (0 to 0.5) at which to calculate A * int r - 1/2 the number of filter coefficients * double ad[] - 'b' in Oppenheim & Schafer [r+1] * double x[] - [r+1] * double y[] - 'C' in Oppenheim & Schafer [r+1] * * OUTPUT: * ------- * Returns double value of A[freq] *********************/ double ComputeA(double freq, int r, double ad[], double x[], double y[]) { int i; double xc, c, denom, numer; denom = numer = 0; xc = cos(Pi2 * freq); for (i=0; i<=r; i++) { c = xc - x[i]; if (fabs(c) < 1.0e-7) { numer = y[i]; denom = 1; break; } c = ad[i]/c; denom += c; numer += c*y[i]; } return numer/denom; } /************************ * CalcError *=========== * Calculates the Error function from the desired frequency response * on the dense grid (D[]), the weight function on the dense grid (W[]), * and the present response calculation (A[]) * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * double ad[] - [r+1] * double x[] - [r+1] * double y[] - [r+1] * int gridsize - Number of elements in the dense frequency grid * double Grid[] - Frequencies on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the desnse grid [gridsize] * * OUTPUT: * ------- * double E[] - Error function on dense grid [gridsize] ************************/ void CalcError(int r, double ad[], double x[], double y[], int gridsize, double Grid[], double D[], double W[], double E[]) { int i; double A; for (i=0; i<gridsize; i++) { A = ComputeA(Grid[i], r, ad, x, y); E[i] = W[i] * (D[i] - A); } } /************************ * Search *======== * Searches for the maxima/minima of the error curve. If more than * r+1 extrema are found, it uses the following heuristic (thanks * Chris Hanson): * 1) Adjacent non-alternating extrema deleted first. * 2) If there are more than one excess extrema, delete the * one with the smallest error. This will create a non-alternation * condition that is fixed by 1). * 3) If there is exactly one excess extremum, delete the smaller * of the first/last extremum * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int Ext[] - Indexes to Grid[] of extremal frequencies [r+1] * int gridsize - Number of elements in the dense frequency grid * double E[] - Array of error values. [gridsize] * OUTPUT: * ------- * int Ext[] - New indexes to extremal frequencies [r+1] ************************/ void Search(int r, int Ext[], int gridsize, double E[]) { int i, j, k, l, extra; /* Counters */ int up, alt; int *foundExt; /* Array of found extremals */ /* * Allocate enough space for found extremals. */ foundExt = (int *)malloc((2*r) * sizeof(int)); k = 0; /* * Check for extremum at 0. */ if (((E[0]>0.0) && (E[0]>E[1])) || ((E[0]<0.0) && (E[0]<E[1]))) foundExt[k++] = 0; /* * Check for extrema inside dense grid */ for (i=1; i<gridsize-1; i++) { if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) || ((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0))) foundExt[k++] = i; } /* * Check for extremum at 0.5 */ j = gridsize-1; if (((E[j]>0.0) && (E[j]>E[j-1])) || ((E[j]<0.0) && (E[j]<E[j-1]))) foundExt[k++] = j; /* * Remove extra extremals */ extra = k - (r+1); while (extra > 0) { if (E[foundExt[0]] > 0.0) up = 1; /* first one is a maxima */ else up = 0; /* first one is a minima */ l=0; alt = 1; for (j=1; j<k; j++) { if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]])) l = j; /* new smallest error. */ if ((up) && (E[foundExt[j]] < 0.0)) up = 0; /* switch to a minima */ else if ((!up) && (E[foundExt[j]] > 0.0)) up = 1; /* switch to a maxima */ else { alt = 0; break; /* Ooops, found two non-alternating */ } /* extrema. Delete smallest of them */ } /* if the loop finishes, all extrema are alternating */ /* * If there's only one extremal and all are alternating, * delete the smallest of the first/last extremals. */ if ((alt) && (extra == 1)) { if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]])) l = foundExt[k-1]; /* Delete last extremal */ else l = foundExt[0]; /* Delete first extremal */ } for (j=l; j<k; j++) /* Loop that does the deletion */ { foundExt[j] = foundExt[j+1]; } k--; extra--; } for (i=0; i<=r; i++) { Ext[i] = foundExt[i]; /* Copy found extremals to Ext[] */ } free(foundExt); } /********************* * FreqSample *============ * Simple frequency sampling algorithm to determine the impulse * response h[] from A's found in ComputeA * * * INPUT: * ------ * int N - Number of filter coefficients * double A[] - Sample points of desired response [N/2] * int symmetry - Symmetry of desired filter * * OUTPUT: * ------- * double h[] - Impulse Response of final filter [N] *********************/ void FreqSample(int N, double A[], double h[], int symm) { int n, k; double x, val, M; M = (N-1.0)/2.0; if (symm == POSITIVE) { if (N%2) { for (n=0; n<N; n++) { val = A[0]; x = Pi2 * (n - M)/N; for (k=1; k<=M; k++) val += 2.0 * A[k] * cos(x*k); h[n] = val/N; } } else { for (n=0; n<N; n++) { val = A[0]; x = Pi2 * (n - M)/N; for (k=1; k<=(N/2-1); k++) val += 2.0 * A[k] * cos(x*k); h[n] = val/N; } } } else { if (N%2) { for (n=0; n<N; n++) { val = 0; x = Pi2 * (n - M)/N; for (k=1; k<=M; k++) val += 2.0 * A[k] * sin(x*k); h[n] = val/N; } } else { for (n=0; n<N; n++) { val = A[N/2] * sin(Pi * (n - M)); x = Pi2 * (n - M)/N; for (k=1; k<=(N/2-1); k++) val += 2.0 * A[k] * sin(x*k); h[n] = val/N; } } } } /******************* * isDone *======== * Checks to see if the error function is small enough to consider * the result to have converged. * * INPUT: * ------ * int r - 1/2 the number of filter coeffiecients * int Ext[] - Indexes to extremal frequencies [r+1] * double E[] - Error function on the dense grid [gridsize] * * OUTPUT: * ------- * Returns 1 if the result converged * Returns 0 if the result has not converged ********************/ short isDone(int r, int Ext[], double E[]) { int i; double min, max, current; min = max = fabs(E[Ext[0]]); for (i=1; i<=r; i++) { current = fabs(E[Ext[i]]); if (current < min) min = current; if (current > max) max = current; } if (((max-min)/max) < 0.0001) return 1; return 0; } /******************** * remez *======= * Calculates the optimal (in the Chebyshev/minimax sense) * FIR filter impulse response given a set of band edges, * the desired reponse on those bands, and the weight given to * the error in those bands. * * INPUT: * ------ * int numtaps - Number of filter coefficients * int numband - Number of bands in filter specification * double bands[] - User-specified band edges [2 * numband] * double des[] - User-specified band responses [numband] * double weight[] - User-specified error weights [numband] * int type - Type of filter * * OUTPUT: * ------- * double h[] - Impulse response of final filter [numtaps] ********************/ void remez(double h[], int numtaps, int numband, double bands[], double des[], double weight[], int type) { double *Grid, *W, *D, *E; int i, iter, gridsize, r, *Ext; double *taps, c; double *x, *y, *ad; int symmetry; if (type == BANDPASS) symmetry = POSITIVE; else symmetry = NEGATIVE; r = numtaps/2; /* number of extrema */ if ((numtaps%2) && (symmetry == POSITIVE)) r++; /* * Predict dense grid size in advance for memory allocation * .5 is so we round up, not truncate */ gridsize = 0; for (i=0; i<numband; i++) { gridsize += (int)(2*r*GRIDDENSITY*(bands[2*i+1] - bands[2*i]) + .5); } if (symmetry == NEGATIVE) { gridsize--; } /* * Dynamically allocate memory for arrays with proper sizes */ Grid = (double *)malloc(gridsize * sizeof(double)); D = (double *)malloc(gridsize * sizeof(double)); W = (double *)malloc(gridsize * sizeof(double)); E = (double *)malloc(gridsize * sizeof(double)); Ext = (int *)malloc((r+1) * sizeof(int)); taps = (double *)malloc((r+1) * sizeof(double)); x = (double *)malloc((r+1) * sizeof(double)); y = (double *)malloc((r+1) * sizeof(double)); ad = (double *)malloc((r+1) * sizeof(double)); /* * Create dense frequency grid */ CreateDenseGrid(r, numtaps, numband, bands, des, weight, &gridsize, Grid, D, W, symmetry); InitialGuess(r, Ext, gridsize); /* * For Differentiator: (fix grid) */ if (type == DIFFERENTIATOR) { for (i=0; i<gridsize; i++) { /* D[i] = D[i]*Grid[i]; */ if (D[i] > 0.0001) W[i] = W[i]/Grid[i]; } } /* * For odd or Negative symmetry filters, alter the * D[] and W[] according to Parks McClellan */ if (symmetry == POSITIVE) { if (numtaps % 2 == 0) { for (i=0; i<gridsize; i++) { c = cos(Pi * Grid[i]); D[i] /= c; W[i] *= c; } } } else { if (numtaps % 2) { for (i=0; i<gridsize; i++) { c = sin(Pi2 * Grid[i]); D[i] /= c; W[i] *= c; } } else { for (i=0; i<gridsize; i++) { c = sin(Pi * Grid[i]); D[i] /= c; W[i] *= c; } } } /* * Perform the Remez Exchange algorithm */ for (iter=0; iter<MAXITERATIONS; iter++) { CalcParms(r, Ext, Grid, D, W, ad, x, y); CalcError(r, ad, x, y, gridsize, Grid, D, W, E); Search(r, Ext, gridsize, E); if (isDone(r, Ext, E)) break; } if (iter == MAXITERATIONS) { printf("Reached maximum iteration count.\nResults may be bad.\n"); } CalcParms(r, Ext, Grid, D, W, ad, x, y); /* * Find the 'taps' of the filter for use with Frequency * Sampling. If odd or Negative symmetry, fix the taps * according to Parks McClellan */ for (i=0; i<=numtaps/2; i++) { if (symmetry == POSITIVE) { if (numtaps%2) c = 1; else c = cos(Pi * (double)i/numtaps); } else { if (numtaps%2) c = sin(Pi2 * (double)i/numtaps); else c = sin(Pi * (double)i/numtaps); } taps[i] = ComputeA((double)i/numtaps, r, ad, x, y)*c; } /* * Frequency sampling design with calculated taps */ FreqSample(numtaps, taps, h, symmetry); /* * Delete allocated memory */ free(Grid); free(W); free(D); free(E); free(Ext); free(x); free(y); free(ad); }