Mercurial > mplayer.hg
view libass/ass_strtod.c @ 36892:f50427ad9ff6
Internally map item 'potmeter' onto 'hpotmeter'.
Former version of the GUI treated a potmeter very similar to a hpotmeter
(the Win32 GUI still does so) and lots of skins are solely using
potmeters instead of hpotmeters, although this doesn't make sense at
all.
The current version of the GUI is treating a potmeter differently, but
in order to not break old skins, restore the old behaviour.
For the X11/GTK GUI, a potmeter is now simply a hpotmeter with
button=NULL and (button)width=(button)height=0. For the Win32 GUI
(where skins unfortunately are handled a bit differently and things
are more complicated) a potmeter is now a hpotmeter without button
but (button)width=(widget)width and (button)height=(widget)height.
Additionally, print a legacy information, because the item 'potmeter' is
obsolete now and oughtn't be used any longer.
author | ib |
---|---|
date | Mon, 10 Mar 2014 17:32:29 +0000 |
parents | e64df5862cea |
children |
line wrap: on
line source
/* * Copyright (c) 1988-1993 The Regents of the University of California. * Copyright (c) 1994 Sun Microsystems, Inc. * * Permission to use, copy, modify, and distribute this * software and its documentation for any purpose and without * fee is hereby granted, provided that the above copyright * notice appear in all copies. The University of California * makes no representations about the suitability of this * software for any purpose. It is provided "as is" without * express or implied warranty. * */ #include <stdlib.h> #include <ctype.h> #include <errno.h> const static int maxExponent = 511; /* Largest possible base 10 exponent. Any * exponent larger than this will already * produce underflow or overflow, so there's * no need to worry about additional digits. */ const static double powersOf10[] = { /* Table giving binary powers of 10. Entry */ 10., /* is 10^2^i. Used to convert decimal */ 100., /* exponents into floating-point numbers. */ 1.0e4, 1.0e8, 1.0e16, 1.0e32, 1.0e64, 1.0e128, 1.0e256 }; /* *---------------------------------------------------------------------- * * strtod -- * * This procedure converts a floating-point number from an ASCII * decimal representation to internal double-precision format. * * Results: * The return value is the double-precision floating-point * representation of the characters in string. If endPtr isn't * NULL, then *endPtr is filled in with the address of the * next character after the last one that was part of the * floating-point number. * * Side effects: * None. * *---------------------------------------------------------------------- */ double ass_strtod(string, endPtr) const char *string; /* A decimal ASCII floating-point number, * optionally preceded by white space. * Must have form "-I.FE-X", where I is the * integer part of the mantissa, F is the * fractional part of the mantissa, and X * is the exponent. Either of the signs * may be "+", "-", or omitted. Either I * or F may be omitted, or both. The decimal * point isn't necessary unless F is present. * The "E" may actually be an "e". E and X * may both be omitted (but not just one). */ char **endPtr; /* If non-NULL, store terminating character's * address here. */ { int sign, expSign = 0; double fraction, dblExp, *d; register const char *p; register int c; int exp = 0; /* Exponent read from "EX" field. */ int fracExp = 0; /* Exponent that derives from the fractional * part. Under normal circumstatnces, it is * the negative of the number of digits in F. * However, if I is very long, the last digits * of I get dropped (otherwise a long I with a * large negative exponent could cause an * unnecessary overflow on I alone). In this * case, fracExp is incremented one for each * dropped digit. */ int mantSize; /* Number of digits in mantissa. */ int decPt; /* Number of mantissa digits BEFORE decimal * point. */ const char *pExp; /* Temporarily holds location of exponent * in string. */ /* * Strip off leading blanks and check for a sign. */ p = string; while (isspace(*p)) { p += 1; } if (*p == '-') { sign = 1; p += 1; } else { if (*p == '+') { p += 1; } sign = 0; } /* * Count the number of digits in the mantissa (including the decimal * point), and also locate the decimal point. */ decPt = -1; for (mantSize = 0; ; mantSize += 1) { c = *p; if (!isdigit(c)) { if ((c != '.') || (decPt >= 0)) { break; } decPt = mantSize; } p += 1; } /* * Now suck up the digits in the mantissa. Use two integers to * collect 9 digits each (this is faster than using floating-point). * If the mantissa has more than 18 digits, ignore the extras, since * they can't affect the value anyway. */ pExp = p; p -= mantSize; if (decPt < 0) { decPt = mantSize; } else { mantSize -= 1; /* One of the digits was the point. */ } if (mantSize > 18) { fracExp = decPt - 18; mantSize = 18; } else { fracExp = decPt - mantSize; } if (mantSize == 0) { fraction = 0.0; p = string; goto done; } else { int frac1, frac2; frac1 = 0; for ( ; mantSize > 9; mantSize -= 1) { c = *p; p += 1; if (c == '.') { c = *p; p += 1; } frac1 = 10*frac1 + (c - '0'); } frac2 = 0; for (; mantSize > 0; mantSize -= 1) { c = *p; p += 1; if (c == '.') { c = *p; p += 1; } frac2 = 10*frac2 + (c - '0'); } fraction = (1.0e9 * frac1) + frac2; } /* * Skim off the exponent. */ p = pExp; if ((*p == 'E') || (*p == 'e')) { p += 1; if (*p == '-') { expSign = 1; p += 1; } else { if (*p == '+') { p += 1; } expSign = 0; } while (isdigit(*p)) { exp = exp * 10 + (*p - '0'); p += 1; } } if (expSign) { exp = fracExp - exp; } else { exp = fracExp + exp; } /* * Generate a floating-point number that represents the exponent. * Do this by processing the exponent one bit at a time to combine * many powers of 2 of 10. Then combine the exponent with the * fraction. */ if (exp < 0) { expSign = 1; exp = -exp; } else { expSign = 0; } if (exp > maxExponent) { exp = maxExponent; errno = ERANGE; } dblExp = 1.0; for (d = (double *) powersOf10; exp != 0; exp >>= 1, d += 1) { if (exp & 01) { dblExp *= *d; } } if (expSign) { fraction /= dblExp; } else { fraction *= dblExp; } done: if (endPtr != NULL) { *endPtr = (char *) p; } if (sign) { return -fraction; } return fraction; }