Mercurial > emacs
annotate doc/lispref/numbers.texi @ 107521:54f3a4d055ee
Document font-use-system-font.
* cmdargs.texi (Font X): Move most content to Fonts.
* frames.texi (Fonts): New node. Document font-use-system-font.
* emacs.texi (Top):
* xresources.texi (Table of Resources):
* mule.texi (Defining Fontsets, Charsets): Update xrefs.
| author | Chong Yidong <cyd@stupidchicken.com> |
|---|---|
| date | Sat, 20 Mar 2010 13:24:06 -0400 |
| parents | 11f018190d5c |
| children | 71353caf35e3 |
| rev | line source |
|---|---|
| 84091 | 1 @c -*-texinfo-*- |
| 2 @c This is part of the GNU Emacs Lisp Reference Manual. | |
| 3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001, | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
4 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
5 @c Free Software Foundation, Inc. |
| 84091 | 6 @c See the file elisp.texi for copying conditions. |
|
84116
0ba80d073e27
(setfilename): Go up one more level to ../../info.
Glenn Morris <rgm@gnu.org>
parents:
84091
diff
changeset
|
7 @setfilename ../../info/numbers |
| 84091 | 8 @node Numbers, Strings and Characters, Lisp Data Types, Top |
| 9 @chapter Numbers | |
| 10 @cindex integers | |
| 11 @cindex numbers | |
| 12 | |
| 13 GNU Emacs supports two numeric data types: @dfn{integers} and | |
| 14 @dfn{floating point numbers}. Integers are whole numbers such as | |
| 15 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point | |
| 16 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or | |
| 17 2.71828. They can also be expressed in exponential notation: 1.5e2 | |
| 18 equals 150; in this example, @samp{e2} stands for ten to the second | |
| 19 power, and that is multiplied by 1.5. Floating point values are not | |
| 20 exact; they have a fixed, limited amount of precision. | |
| 21 | |
| 22 @menu | |
| 23 * Integer Basics:: Representation and range of integers. | |
| 24 * Float Basics:: Representation and range of floating point. | |
| 25 * Predicates on Numbers:: Testing for numbers. | |
| 26 * Comparison of Numbers:: Equality and inequality predicates. | |
| 27 * Numeric Conversions:: Converting float to integer and vice versa. | |
| 28 * Arithmetic Operations:: How to add, subtract, multiply and divide. | |
| 29 * Rounding Operations:: Explicitly rounding floating point numbers. | |
| 30 * Bitwise Operations:: Logical and, or, not, shifting. | |
| 31 * Math Functions:: Trig, exponential and logarithmic functions. | |
| 32 * Random Numbers:: Obtaining random integers, predictable or not. | |
| 33 @end menu | |
| 34 | |
| 35 @node Integer Basics | |
| 36 @comment node-name, next, previous, up | |
| 37 @section Integer Basics | |
| 38 | |
| 39 The range of values for an integer depends on the machine. The | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
40 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e., |
| 84091 | 41 @ifnottex |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
42 -2**29 |
| 84091 | 43 @end ifnottex |
| 44 @tex | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
45 @math{-2^{29}} |
| 84091 | 46 @end tex |
| 47 to | |
| 48 @ifnottex | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
49 2**29 - 1), |
| 84091 | 50 @end ifnottex |
| 51 @tex | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
52 @math{2^{29}-1}), |
| 84091 | 53 @end tex |
| 54 but some machines may provide a wider range. Many examples in this | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
55 chapter assume an integer has 30 bits. |
| 84091 | 56 @cindex overflow |
| 57 | |
| 58 The Lisp reader reads an integer as a sequence of digits with optional | |
| 59 initial sign and optional final period. | |
| 60 | |
| 61 @example | |
| 62 1 ; @r{The integer 1.} | |
| 63 1. ; @r{The integer 1.} | |
| 64 +1 ; @r{Also the integer 1.} | |
| 65 -1 ; @r{The integer @minus{}1.} | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
66 1073741825 ; @r{Also the integer 1, due to overflow.} |
| 84091 | 67 0 ; @r{The integer 0.} |
| 68 -0 ; @r{The integer 0.} | |
| 69 @end example | |
| 70 | |
| 71 @cindex integers in specific radix | |
| 72 @cindex radix for reading an integer | |
| 73 @cindex base for reading an integer | |
| 74 @cindex hex numbers | |
| 75 @cindex octal numbers | |
| 76 @cindex reading numbers in hex, octal, and binary | |
| 77 The syntax for integers in bases other than 10 uses @samp{#} | |
| 78 followed by a letter that specifies the radix: @samp{b} for binary, | |
| 79 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to | |
| 80 specify radix @var{radix}. Case is not significant for the letter | |
| 81 that specifies the radix. Thus, @samp{#b@var{integer}} reads | |
| 82 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads | |
| 83 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run | |
| 84 from 2 to 36. For example: | |
| 85 | |
| 86 @example | |
| 87 #b101100 @result{} 44 | |
| 88 #o54 @result{} 44 | |
| 89 #x2c @result{} 44 | |
| 90 #24r1k @result{} 44 | |
| 91 @end example | |
| 92 | |
| 93 To understand how various functions work on integers, especially the | |
| 94 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to | |
| 95 view the numbers in their binary form. | |
| 96 | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
97 In 30-bit binary, the decimal integer 5 looks like this: |
| 84091 | 98 |
| 99 @example | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
100 00 0000 0000 0000 0000 0000 0000 0101 |
| 84091 | 101 @end example |
| 102 | |
| 103 @noindent | |
| 104 (We have inserted spaces between groups of 4 bits, and two spaces | |
| 105 between groups of 8 bits, to make the binary integer easier to read.) | |
| 106 | |
| 107 The integer @minus{}1 looks like this: | |
| 108 | |
| 109 @example | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
110 11 1111 1111 1111 1111 1111 1111 1111 |
| 84091 | 111 @end example |
| 112 | |
| 113 @noindent | |
| 114 @cindex two's complement | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
115 @minus{}1 is represented as 30 ones. (This is called @dfn{two's |
| 84091 | 116 complement} notation.) |
| 117 | |
| 118 The negative integer, @minus{}5, is creating by subtracting 4 from | |
| 119 @minus{}1. In binary, the decimal integer 4 is 100. Consequently, | |
| 120 @minus{}5 looks like this: | |
| 121 | |
| 122 @example | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
123 11 1111 1111 1111 1111 1111 1111 1011 |
| 84091 | 124 @end example |
| 125 | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
126 In this implementation, the largest 30-bit binary integer value is |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
127 536,870,911 in decimal. In binary, it looks like this: |
| 84091 | 128 |
| 129 @example | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
130 01 1111 1111 1111 1111 1111 1111 1111 |
| 84091 | 131 @end example |
| 132 | |
| 133 Since the arithmetic functions do not check whether integers go | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
134 outside their range, when you add 1 to 536,870,911, the value is the |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
135 negative integer @minus{}536,870,912: |
| 84091 | 136 |
| 137 @example | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
138 (+ 1 536870911) |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
139 @result{} -536870912 |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
140 @result{} 10 0000 0000 0000 0000 0000 0000 0000 |
| 84091 | 141 @end example |
| 142 | |
| 143 Many of the functions described in this chapter accept markers for | |
| 144 arguments in place of numbers. (@xref{Markers}.) Since the actual | |
| 145 arguments to such functions may be either numbers or markers, we often | |
| 146 give these arguments the name @var{number-or-marker}. When the argument | |
| 147 value is a marker, its position value is used and its buffer is ignored. | |
| 148 | |
| 149 @defvar most-positive-fixnum | |
| 150 The value of this variable is the largest integer that Emacs Lisp | |
| 151 can handle. | |
| 152 @end defvar | |
| 153 | |
| 154 @defvar most-negative-fixnum | |
| 155 The value of this variable is the smallest integer that Emacs Lisp can | |
| 156 handle. It is negative. | |
| 157 @end defvar | |
| 158 | |
|
100026
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
159 @xref{Character Codes, max-char}, for the maximum value of a valid |
|
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
160 character codepoint. |
|
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
161 |
| 84091 | 162 @node Float Basics |
| 163 @section Floating Point Basics | |
| 164 | |
| 165 Floating point numbers are useful for representing numbers that are | |
| 166 not integral. The precise range of floating point numbers is | |
| 167 machine-specific; it is the same as the range of the C data type | |
| 168 @code{double} on the machine you are using. | |
| 169 | |
| 170 The read-syntax for floating point numbers requires either a decimal | |
| 171 point (with at least one digit following), an exponent, or both. For | |
| 172 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and | |
| 173 @samp{.15e4} are five ways of writing a floating point number whose | |
| 174 value is 1500. They are all equivalent. You can also use a minus sign | |
| 175 to write negative floating point numbers, as in @samp{-1.0}. | |
| 176 | |
| 177 @cindex @acronym{IEEE} floating point | |
| 178 @cindex positive infinity | |
| 179 @cindex negative infinity | |
| 180 @cindex infinity | |
| 181 @cindex NaN | |
| 182 Most modern computers support the @acronym{IEEE} floating point standard, | |
| 183 which provides for positive infinity and negative infinity as floating point | |
| 184 values. It also provides for a class of values called NaN or | |
| 185 ``not-a-number''; numerical functions return such values in cases where | |
| 186 there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a | |
| 187 NaN. For practical purposes, there's no significant difference between | |
| 188 different NaN values in Emacs Lisp, and there's no rule for precisely | |
| 189 which NaN value should be used in a particular case, so Emacs Lisp | |
| 190 doesn't try to distinguish them (but it does report the sign, if you | |
| 191 print it). Here are the read syntaxes for these special floating | |
| 192 point values: | |
| 193 | |
| 194 @table @asis | |
| 195 @item positive infinity | |
| 196 @samp{1.0e+INF} | |
| 197 @item negative infinity | |
| 198 @samp{-1.0e+INF} | |
| 199 @item Not-a-number | |
| 200 @samp{0.0e+NaN} or @samp{-0.0e+NaN}. | |
| 201 @end table | |
| 202 | |
| 203 To test whether a floating point value is a NaN, compare it with | |
| 204 itself using @code{=}. That returns @code{nil} for a NaN, and | |
| 205 @code{t} for any other floating point value. | |
| 206 | |
| 207 The value @code{-0.0} is distinguishable from ordinary zero in | |
| 208 @acronym{IEEE} floating point, but Emacs Lisp @code{equal} and | |
| 209 @code{=} consider them equal values. | |
| 210 | |
| 211 You can use @code{logb} to extract the binary exponent of a floating | |
| 212 point number (or estimate the logarithm of an integer): | |
| 213 | |
| 214 @defun logb number | |
| 215 This function returns the binary exponent of @var{number}. More | |
| 216 precisely, the value is the logarithm of @var{number} base 2, rounded | |
| 217 down to an integer. | |
| 218 | |
| 219 @example | |
| 220 (logb 10) | |
| 221 @result{} 3 | |
| 222 (logb 10.0e20) | |
| 223 @result{} 69 | |
| 224 @end example | |
| 225 @end defun | |
| 226 | |
| 227 @node Predicates on Numbers | |
| 228 @section Type Predicates for Numbers | |
| 229 @cindex predicates for numbers | |
| 230 | |
| 231 The functions in this section test for numbers, or for a specific | |
| 232 type of number. The functions @code{integerp} and @code{floatp} can | |
| 233 take any type of Lisp object as argument (they would not be of much | |
| 234 use otherwise), but the @code{zerop} predicate requires a number as | |
| 235 its argument. See also @code{integer-or-marker-p} and | |
| 236 @code{number-or-marker-p}, in @ref{Predicates on Markers}. | |
| 237 | |
| 238 @defun floatp object | |
| 239 This predicate tests whether its argument is a floating point | |
| 240 number and returns @code{t} if so, @code{nil} otherwise. | |
| 241 | |
| 242 @code{floatp} does not exist in Emacs versions 18 and earlier. | |
| 243 @end defun | |
| 244 | |
| 245 @defun integerp object | |
| 246 This predicate tests whether its argument is an integer, and returns | |
| 247 @code{t} if so, @code{nil} otherwise. | |
| 248 @end defun | |
| 249 | |
| 250 @defun numberp object | |
| 251 This predicate tests whether its argument is a number (either integer or | |
| 252 floating point), and returns @code{t} if so, @code{nil} otherwise. | |
| 253 @end defun | |
| 254 | |
| 255 @defun wholenump object | |
| 256 @cindex natural numbers | |
| 257 The @code{wholenump} predicate (whose name comes from the phrase | |
| 258 ``whole-number-p'') tests to see whether its argument is a nonnegative | |
| 259 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is | |
| 260 considered non-negative. | |
| 261 | |
| 262 @findex natnump | |
| 263 @code{natnump} is an obsolete synonym for @code{wholenump}. | |
| 264 @end defun | |
| 265 | |
| 266 @defun zerop number | |
| 267 This predicate tests whether its argument is zero, and returns @code{t} | |
| 268 if so, @code{nil} otherwise. The argument must be a number. | |
| 269 | |
| 270 @code{(zerop x)} is equivalent to @code{(= x 0)}. | |
| 271 @end defun | |
| 272 | |
| 273 @node Comparison of Numbers | |
| 274 @section Comparison of Numbers | |
| 275 @cindex number comparison | |
| 276 @cindex comparing numbers | |
| 277 | |
| 278 To test numbers for numerical equality, you should normally use | |
| 279 @code{=}, not @code{eq}. There can be many distinct floating point | |
| 280 number objects with the same numeric value. If you use @code{eq} to | |
| 281 compare them, then you test whether two values are the same | |
| 282 @emph{object}. By contrast, @code{=} compares only the numeric values | |
| 283 of the objects. | |
| 284 | |
| 285 At present, each integer value has a unique Lisp object in Emacs Lisp. | |
| 286 Therefore, @code{eq} is equivalent to @code{=} where integers are | |
| 287 concerned. It is sometimes convenient to use @code{eq} for comparing an | |
| 288 unknown value with an integer, because @code{eq} does not report an | |
| 289 error if the unknown value is not a number---it accepts arguments of any | |
| 290 type. By contrast, @code{=} signals an error if the arguments are not | |
| 291 numbers or markers. However, it is a good idea to use @code{=} if you | |
| 292 can, even for comparing integers, just in case we change the | |
| 293 representation of integers in a future Emacs version. | |
| 294 | |
| 295 Sometimes it is useful to compare numbers with @code{equal}; it | |
| 296 treats two numbers as equal if they have the same data type (both | |
| 297 integers, or both floating point) and the same value. By contrast, | |
| 298 @code{=} can treat an integer and a floating point number as equal. | |
| 299 @xref{Equality Predicates}. | |
| 300 | |
| 301 There is another wrinkle: because floating point arithmetic is not | |
| 302 exact, it is often a bad idea to check for equality of two floating | |
| 303 point values. Usually it is better to test for approximate equality. | |
| 304 Here's a function to do this: | |
| 305 | |
| 306 @example | |
| 307 (defvar fuzz-factor 1.0e-6) | |
| 308 (defun approx-equal (x y) | |
| 309 (or (and (= x 0) (= y 0)) | |
| 310 (< (/ (abs (- x y)) | |
| 311 (max (abs x) (abs y))) | |
| 312 fuzz-factor))) | |
| 313 @end example | |
| 314 | |
| 315 @cindex CL note---integers vrs @code{eq} | |
| 316 @quotation | |
| 317 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires | |
| 318 @code{=} because Common Lisp implements multi-word integers, and two | |
| 319 distinct integer objects can have the same numeric value. Emacs Lisp | |
| 320 can have just one integer object for any given value because it has a | |
| 321 limited range of integer values. | |
| 322 @end quotation | |
| 323 | |
| 324 @defun = number-or-marker1 number-or-marker2 | |
| 325 This function tests whether its arguments are numerically equal, and | |
| 326 returns @code{t} if so, @code{nil} otherwise. | |
| 327 @end defun | |
| 328 | |
| 329 @defun eql value1 value2 | |
| 330 This function acts like @code{eq} except when both arguments are | |
| 331 numbers. It compares numbers by type and numeric value, so that | |
| 332 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and | |
| 333 @code{(eql 1 1)} both return @code{t}. | |
| 334 @end defun | |
| 335 | |
| 336 @defun /= number-or-marker1 number-or-marker2 | |
| 337 This function tests whether its arguments are numerically equal, and | |
| 338 returns @code{t} if they are not, and @code{nil} if they are. | |
| 339 @end defun | |
| 340 | |
| 341 @defun < number-or-marker1 number-or-marker2 | |
| 342 This function tests whether its first argument is strictly less than | |
| 343 its second argument. It returns @code{t} if so, @code{nil} otherwise. | |
| 344 @end defun | |
| 345 | |
| 346 @defun <= number-or-marker1 number-or-marker2 | |
| 347 This function tests whether its first argument is less than or equal | |
| 348 to its second argument. It returns @code{t} if so, @code{nil} | |
| 349 otherwise. | |
| 350 @end defun | |
| 351 | |
| 352 @defun > number-or-marker1 number-or-marker2 | |
| 353 This function tests whether its first argument is strictly greater | |
| 354 than its second argument. It returns @code{t} if so, @code{nil} | |
| 355 otherwise. | |
| 356 @end defun | |
| 357 | |
| 358 @defun >= number-or-marker1 number-or-marker2 | |
| 359 This function tests whether its first argument is greater than or | |
| 360 equal to its second argument. It returns @code{t} if so, @code{nil} | |
| 361 otherwise. | |
| 362 @end defun | |
| 363 | |
| 364 @defun max number-or-marker &rest numbers-or-markers | |
| 365 This function returns the largest of its arguments. | |
| 366 If any of the arguments is floating-point, the value is returned | |
| 367 as floating point, even if it was given as an integer. | |
| 368 | |
| 369 @example | |
| 370 (max 20) | |
| 371 @result{} 20 | |
| 372 (max 1 2.5) | |
| 373 @result{} 2.5 | |
| 374 (max 1 3 2.5) | |
| 375 @result{} 3.0 | |
| 376 @end example | |
| 377 @end defun | |
| 378 | |
| 379 @defun min number-or-marker &rest numbers-or-markers | |
| 380 This function returns the smallest of its arguments. | |
| 381 If any of the arguments is floating-point, the value is returned | |
| 382 as floating point, even if it was given as an integer. | |
| 383 | |
| 384 @example | |
| 385 (min -4 1) | |
| 386 @result{} -4 | |
| 387 @end example | |
| 388 @end defun | |
| 389 | |
| 390 @defun abs number | |
| 391 This function returns the absolute value of @var{number}. | |
| 392 @end defun | |
| 393 | |
| 394 @node Numeric Conversions | |
| 395 @section Numeric Conversions | |
| 396 @cindex rounding in conversions | |
| 397 @cindex number conversions | |
| 398 @cindex converting numbers | |
| 399 | |
| 400 To convert an integer to floating point, use the function @code{float}. | |
| 401 | |
| 402 @defun float number | |
| 403 This returns @var{number} converted to floating point. | |
| 404 If @var{number} is already a floating point number, @code{float} returns | |
| 405 it unchanged. | |
| 406 @end defun | |
| 407 | |
| 408 There are four functions to convert floating point numbers to integers; | |
| 409 they differ in how they round. All accept an argument @var{number} | |
| 410 and an optional argument @var{divisor}. Both arguments may be | |
| 411 integers or floating point numbers. @var{divisor} may also be | |
| 412 @code{nil}. If @var{divisor} is @code{nil} or omitted, these | |
| 413 functions convert @var{number} to an integer, or return it unchanged | |
| 414 if it already is an integer. If @var{divisor} is non-@code{nil}, they | |
| 415 divide @var{number} by @var{divisor} and convert the result to an | |
| 416 integer. An @code{arith-error} results if @var{divisor} is 0. | |
| 417 | |
| 418 @defun truncate number &optional divisor | |
| 419 This returns @var{number}, converted to an integer by rounding towards | |
| 420 zero. | |
| 421 | |
| 422 @example | |
| 423 (truncate 1.2) | |
| 424 @result{} 1 | |
| 425 (truncate 1.7) | |
| 426 @result{} 1 | |
| 427 (truncate -1.2) | |
| 428 @result{} -1 | |
| 429 (truncate -1.7) | |
| 430 @result{} -1 | |
| 431 @end example | |
| 432 @end defun | |
| 433 | |
| 434 @defun floor number &optional divisor | |
| 435 This returns @var{number}, converted to an integer by rounding downward | |
| 436 (towards negative infinity). | |
| 437 | |
| 438 If @var{divisor} is specified, this uses the kind of division | |
| 439 operation that corresponds to @code{mod}, rounding downward. | |
| 440 | |
| 441 @example | |
| 442 (floor 1.2) | |
| 443 @result{} 1 | |
| 444 (floor 1.7) | |
| 445 @result{} 1 | |
| 446 (floor -1.2) | |
| 447 @result{} -2 | |
| 448 (floor -1.7) | |
| 449 @result{} -2 | |
| 450 (floor 5.99 3) | |
| 451 @result{} 1 | |
| 452 @end example | |
| 453 @end defun | |
| 454 | |
| 455 @defun ceiling number &optional divisor | |
| 456 This returns @var{number}, converted to an integer by rounding upward | |
| 457 (towards positive infinity). | |
| 458 | |
| 459 @example | |
| 460 (ceiling 1.2) | |
| 461 @result{} 2 | |
| 462 (ceiling 1.7) | |
| 463 @result{} 2 | |
| 464 (ceiling -1.2) | |
| 465 @result{} -1 | |
| 466 (ceiling -1.7) | |
| 467 @result{} -1 | |
| 468 @end example | |
| 469 @end defun | |
| 470 | |
| 471 @defun round number &optional divisor | |
| 472 This returns @var{number}, converted to an integer by rounding towards the | |
| 473 nearest integer. Rounding a value equidistant between two integers | |
| 474 may choose the integer closer to zero, or it may prefer an even integer, | |
| 475 depending on your machine. | |
| 476 | |
| 477 @example | |
| 478 (round 1.2) | |
| 479 @result{} 1 | |
| 480 (round 1.7) | |
| 481 @result{} 2 | |
| 482 (round -1.2) | |
| 483 @result{} -1 | |
| 484 (round -1.7) | |
| 485 @result{} -2 | |
| 486 @end example | |
| 487 @end defun | |
| 488 | |
| 489 @node Arithmetic Operations | |
| 490 @section Arithmetic Operations | |
| 491 @cindex arithmetic operations | |
| 492 | |
| 493 Emacs Lisp provides the traditional four arithmetic operations: | |
| 494 addition, subtraction, multiplication, and division. Remainder and modulus | |
| 495 functions supplement the division functions. The functions to | |
| 496 add or subtract 1 are provided because they are traditional in Lisp and | |
| 497 commonly used. | |
| 498 | |
| 499 All of these functions except @code{%} return a floating point value | |
| 500 if any argument is floating. | |
| 501 | |
| 502 It is important to note that in Emacs Lisp, arithmetic functions | |
| 503 do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to | |
| 504 @minus{}268435456, depending on your hardware. | |
| 505 | |
| 506 @defun 1+ number-or-marker | |
| 507 This function returns @var{number-or-marker} plus 1. | |
| 508 For example, | |
| 509 | |
| 510 @example | |
| 511 (setq foo 4) | |
| 512 @result{} 4 | |
| 513 (1+ foo) | |
| 514 @result{} 5 | |
| 515 @end example | |
| 516 | |
| 517 This function is not analogous to the C operator @code{++}---it does not | |
| 518 increment a variable. It just computes a sum. Thus, if we continue, | |
| 519 | |
| 520 @example | |
| 521 foo | |
| 522 @result{} 4 | |
| 523 @end example | |
| 524 | |
| 525 If you want to increment the variable, you must use @code{setq}, | |
| 526 like this: | |
| 527 | |
| 528 @example | |
| 529 (setq foo (1+ foo)) | |
| 530 @result{} 5 | |
| 531 @end example | |
| 532 @end defun | |
| 533 | |
| 534 @defun 1- number-or-marker | |
| 535 This function returns @var{number-or-marker} minus 1. | |
| 536 @end defun | |
| 537 | |
| 538 @defun + &rest numbers-or-markers | |
| 539 This function adds its arguments together. When given no arguments, | |
| 540 @code{+} returns 0. | |
| 541 | |
| 542 @example | |
| 543 (+) | |
| 544 @result{} 0 | |
| 545 (+ 1) | |
| 546 @result{} 1 | |
| 547 (+ 1 2 3 4) | |
| 548 @result{} 10 | |
| 549 @end example | |
| 550 @end defun | |
| 551 | |
| 552 @defun - &optional number-or-marker &rest more-numbers-or-markers | |
| 553 The @code{-} function serves two purposes: negation and subtraction. | |
| 554 When @code{-} has a single argument, the value is the negative of the | |
| 555 argument. When there are multiple arguments, @code{-} subtracts each of | |
| 556 the @var{more-numbers-or-markers} from @var{number-or-marker}, | |
| 557 cumulatively. If there are no arguments, the result is 0. | |
| 558 | |
| 559 @example | |
| 560 (- 10 1 2 3 4) | |
| 561 @result{} 0 | |
| 562 (- 10) | |
| 563 @result{} -10 | |
| 564 (-) | |
| 565 @result{} 0 | |
| 566 @end example | |
| 567 @end defun | |
| 568 | |
| 569 @defun * &rest numbers-or-markers | |
| 570 This function multiplies its arguments together, and returns the | |
| 571 product. When given no arguments, @code{*} returns 1. | |
| 572 | |
| 573 @example | |
| 574 (*) | |
| 575 @result{} 1 | |
| 576 (* 1) | |
| 577 @result{} 1 | |
| 578 (* 1 2 3 4) | |
| 579 @result{} 24 | |
| 580 @end example | |
| 581 @end defun | |
| 582 | |
| 583 @defun / dividend divisor &rest divisors | |
| 584 This function divides @var{dividend} by @var{divisor} and returns the | |
| 585 quotient. If there are additional arguments @var{divisors}, then it | |
| 586 divides @var{dividend} by each divisor in turn. Each argument may be a | |
| 587 number or a marker. | |
| 588 | |
| 589 If all the arguments are integers, then the result is an integer too. | |
| 590 This means the result has to be rounded. On most machines, the result | |
| 591 is rounded towards zero after each division, but some machines may round | |
| 592 differently with negative arguments. This is because the Lisp function | |
| 593 @code{/} is implemented using the C division operator, which also | |
| 594 permits machine-dependent rounding. As a practical matter, all known | |
| 595 machines round in the standard fashion. | |
| 596 | |
| 597 @cindex @code{arith-error} in division | |
| 598 If you divide an integer by 0, an @code{arith-error} error is signaled. | |
| 599 (@xref{Errors}.) Floating point division by zero returns either | |
| 600 infinity or a NaN if your machine supports @acronym{IEEE} floating point; | |
| 601 otherwise, it signals an @code{arith-error} error. | |
| 602 | |
| 603 @example | |
| 604 @group | |
| 605 (/ 6 2) | |
| 606 @result{} 3 | |
| 607 @end group | |
| 608 (/ 5 2) | |
| 609 @result{} 2 | |
| 610 (/ 5.0 2) | |
| 611 @result{} 2.5 | |
| 612 (/ 5 2.0) | |
| 613 @result{} 2.5 | |
| 614 (/ 5.0 2.0) | |
| 615 @result{} 2.5 | |
| 616 (/ 25 3 2) | |
| 617 @result{} 4 | |
| 618 @group | |
| 619 (/ -17 6) | |
| 620 @result{} -2 @r{(could in theory be @minus{}3 on some machines)} | |
| 621 @end group | |
| 622 @end example | |
| 623 @end defun | |
| 624 | |
| 625 @defun % dividend divisor | |
| 626 @cindex remainder | |
| 627 This function returns the integer remainder after division of @var{dividend} | |
| 628 by @var{divisor}. The arguments must be integers or markers. | |
| 629 | |
| 630 For negative arguments, the remainder is in principle machine-dependent | |
| 631 since the quotient is; but in practice, all known machines behave alike. | |
| 632 | |
| 633 An @code{arith-error} results if @var{divisor} is 0. | |
| 634 | |
| 635 @example | |
| 636 (% 9 4) | |
| 637 @result{} 1 | |
| 638 (% -9 4) | |
| 639 @result{} -1 | |
| 640 (% 9 -4) | |
| 641 @result{} 1 | |
| 642 (% -9 -4) | |
| 643 @result{} -1 | |
| 644 @end example | |
| 645 | |
| 646 For any two integers @var{dividend} and @var{divisor}, | |
| 647 | |
| 648 @example | |
| 649 @group | |
| 650 (+ (% @var{dividend} @var{divisor}) | |
| 651 (* (/ @var{dividend} @var{divisor}) @var{divisor})) | |
| 652 @end group | |
| 653 @end example | |
| 654 | |
| 655 @noindent | |
| 656 always equals @var{dividend}. | |
| 657 @end defun | |
| 658 | |
| 659 @defun mod dividend divisor | |
| 660 @cindex modulus | |
| 661 This function returns the value of @var{dividend} modulo @var{divisor}; | |
| 662 in other words, the remainder after division of @var{dividend} | |
| 663 by @var{divisor}, but with the same sign as @var{divisor}. | |
| 664 The arguments must be numbers or markers. | |
| 665 | |
| 666 Unlike @code{%}, @code{mod} returns a well-defined result for negative | |
| 667 arguments. It also permits floating point arguments; it rounds the | |
| 668 quotient downward (towards minus infinity) to an integer, and uses that | |
| 669 quotient to compute the remainder. | |
| 670 | |
| 671 An @code{arith-error} results if @var{divisor} is 0. | |
| 672 | |
| 673 @example | |
| 674 @group | |
| 675 (mod 9 4) | |
| 676 @result{} 1 | |
| 677 @end group | |
| 678 @group | |
| 679 (mod -9 4) | |
| 680 @result{} 3 | |
| 681 @end group | |
| 682 @group | |
| 683 (mod 9 -4) | |
| 684 @result{} -3 | |
| 685 @end group | |
| 686 @group | |
| 687 (mod -9 -4) | |
| 688 @result{} -1 | |
| 689 @end group | |
| 690 @group | |
| 691 (mod 5.5 2.5) | |
| 692 @result{} .5 | |
| 693 @end group | |
| 694 @end example | |
| 695 | |
| 696 For any two numbers @var{dividend} and @var{divisor}, | |
| 697 | |
| 698 @example | |
| 699 @group | |
| 700 (+ (mod @var{dividend} @var{divisor}) | |
| 701 (* (floor @var{dividend} @var{divisor}) @var{divisor})) | |
| 702 @end group | |
| 703 @end example | |
| 704 | |
| 705 @noindent | |
| 706 always equals @var{dividend}, subject to rounding error if either | |
| 707 argument is floating point. For @code{floor}, see @ref{Numeric | |
| 708 Conversions}. | |
| 709 @end defun | |
| 710 | |
| 711 @node Rounding Operations | |
| 712 @section Rounding Operations | |
| 713 @cindex rounding without conversion | |
| 714 | |
| 715 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and | |
| 716 @code{ftruncate} take a floating point argument and return a floating | |
| 717 point result whose value is a nearby integer. @code{ffloor} returns the | |
| 718 nearest integer below; @code{fceiling}, the nearest integer above; | |
| 719 @code{ftruncate}, the nearest integer in the direction towards zero; | |
| 720 @code{fround}, the nearest integer. | |
| 721 | |
| 722 @defun ffloor float | |
| 723 This function rounds @var{float} to the next lower integral value, and | |
| 724 returns that value as a floating point number. | |
| 725 @end defun | |
| 726 | |
| 727 @defun fceiling float | |
| 728 This function rounds @var{float} to the next higher integral value, and | |
| 729 returns that value as a floating point number. | |
| 730 @end defun | |
| 731 | |
| 732 @defun ftruncate float | |
| 733 This function rounds @var{float} towards zero to an integral value, and | |
| 734 returns that value as a floating point number. | |
| 735 @end defun | |
| 736 | |
| 737 @defun fround float | |
| 738 This function rounds @var{float} to the nearest integral value, | |
| 739 and returns that value as a floating point number. | |
| 740 @end defun | |
| 741 | |
| 742 @node Bitwise Operations | |
| 743 @section Bitwise Operations on Integers | |
| 744 @cindex bitwise arithmetic | |
| 745 @cindex logical arithmetic | |
| 746 | |
| 747 In a computer, an integer is represented as a binary number, a | |
| 748 sequence of @dfn{bits} (digits which are either zero or one). A bitwise | |
| 749 operation acts on the individual bits of such a sequence. For example, | |
| 750 @dfn{shifting} moves the whole sequence left or right one or more places, | |
| 751 reproducing the same pattern ``moved over.'' | |
| 752 | |
| 753 The bitwise operations in Emacs Lisp apply only to integers. | |
| 754 | |
| 755 @defun lsh integer1 count | |
| 756 @cindex logical shift | |
| 757 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the | |
| 758 bits in @var{integer1} to the left @var{count} places, or to the right | |
| 759 if @var{count} is negative, bringing zeros into the vacated bits. If | |
| 760 @var{count} is negative, @code{lsh} shifts zeros into the leftmost | |
| 761 (most-significant) bit, producing a positive result even if | |
| 762 @var{integer1} is negative. Contrast this with @code{ash}, below. | |
| 763 | |
| 764 Here are two examples of @code{lsh}, shifting a pattern of bits one | |
| 765 place to the left. We show only the low-order eight bits of the binary | |
| 766 pattern; the rest are all zero. | |
| 767 | |
| 768 @example | |
| 769 @group | |
| 770 (lsh 5 1) | |
| 771 @result{} 10 | |
| 772 ;; @r{Decimal 5 becomes decimal 10.} | |
| 773 00000101 @result{} 00001010 | |
| 774 | |
| 775 (lsh 7 1) | |
| 776 @result{} 14 | |
| 777 ;; @r{Decimal 7 becomes decimal 14.} | |
| 778 00000111 @result{} 00001110 | |
| 779 @end group | |
| 780 @end example | |
| 781 | |
| 782 @noindent | |
| 783 As the examples illustrate, shifting the pattern of bits one place to | |
| 784 the left produces a number that is twice the value of the previous | |
| 785 number. | |
| 786 | |
| 787 Shifting a pattern of bits two places to the left produces results | |
| 788 like this (with 8-bit binary numbers): | |
| 789 | |
| 790 @example | |
| 791 @group | |
| 792 (lsh 3 2) | |
| 793 @result{} 12 | |
| 794 ;; @r{Decimal 3 becomes decimal 12.} | |
| 795 00000011 @result{} 00001100 | |
| 796 @end group | |
| 797 @end example | |
| 798 | |
| 799 On the other hand, shifting one place to the right looks like this: | |
| 800 | |
| 801 @example | |
| 802 @group | |
| 803 (lsh 6 -1) | |
| 804 @result{} 3 | |
| 805 ;; @r{Decimal 6 becomes decimal 3.} | |
| 806 00000110 @result{} 00000011 | |
| 807 @end group | |
| 808 | |
| 809 @group | |
| 810 (lsh 5 -1) | |
| 811 @result{} 2 | |
| 812 ;; @r{Decimal 5 becomes decimal 2.} | |
| 813 00000101 @result{} 00000010 | |
| 814 @end group | |
| 815 @end example | |
| 816 | |
| 817 @noindent | |
| 818 As the example illustrates, shifting one place to the right divides the | |
| 819 value of a positive integer by two, rounding downward. | |
| 820 | |
| 821 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does | |
| 822 not check for overflow, so shifting left can discard significant bits | |
| 823 and change the sign of the number. For example, left shifting | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
824 536,870,911 produces @minus{}2 on a 30-bit machine: |
| 84091 | 825 |
| 826 @example | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
827 (lsh 536870911 1) ; @r{left shift} |
| 84091 | 828 @result{} -2 |
| 829 @end example | |
| 830 | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
831 In binary, in the 30-bit implementation, the argument looks like this: |
| 84091 | 832 |
| 833 @example | |
| 834 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
835 ;; @r{Decimal 536,870,911} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
836 01 1111 1111 1111 1111 1111 1111 1111 |
| 84091 | 837 @end group |
| 838 @end example | |
| 839 | |
| 840 @noindent | |
| 841 which becomes the following when left shifted: | |
| 842 | |
| 843 @example | |
| 844 @group | |
| 845 ;; @r{Decimal @minus{}2} | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
846 11 1111 1111 1111 1111 1111 1111 1110 |
| 84091 | 847 @end group |
| 848 @end example | |
| 849 @end defun | |
| 850 | |
| 851 @defun ash integer1 count | |
| 852 @cindex arithmetic shift | |
| 853 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1} | |
| 854 to the left @var{count} places, or to the right if @var{count} | |
| 855 is negative. | |
| 856 | |
| 857 @code{ash} gives the same results as @code{lsh} except when | |
| 858 @var{integer1} and @var{count} are both negative. In that case, | |
| 859 @code{ash} puts ones in the empty bit positions on the left, while | |
| 860 @code{lsh} puts zeros in those bit positions. | |
| 861 | |
| 862 Thus, with @code{ash}, shifting the pattern of bits one place to the right | |
| 863 looks like this: | |
| 864 | |
| 865 @example | |
| 866 @group | |
| 867 (ash -6 -1) @result{} -3 | |
| 868 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
869 11 1111 1111 1111 1111 1111 1111 1010 |
| 84091 | 870 @result{} |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
871 11 1111 1111 1111 1111 1111 1111 1101 |
| 84091 | 872 @end group |
| 873 @end example | |
| 874 | |
| 875 In contrast, shifting the pattern of bits one place to the right with | |
| 876 @code{lsh} looks like this: | |
| 877 | |
| 878 @example | |
| 879 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
880 (lsh -6 -1) @result{} 536870909 |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
881 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
882 11 1111 1111 1111 1111 1111 1111 1010 |
| 84091 | 883 @result{} |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
884 01 1111 1111 1111 1111 1111 1111 1101 |
| 84091 | 885 @end group |
| 886 @end example | |
| 887 | |
| 888 Here are other examples: | |
| 889 | |
| 890 @c !!! Check if lined up in smallbook format! XDVI shows problem | |
| 891 @c with smallbook but not with regular book! --rjc 16mar92 | |
| 892 @smallexample | |
| 893 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
894 ; @r{ 30-bit binary values} |
| 84091 | 895 |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
896 (lsh 5 2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
897 @result{} 20 ; = @r{00 0000 0000 0000 0000 0000 0001 0100} |
| 84091 | 898 @end group |
| 899 @group | |
| 900 (ash 5 2) | |
| 901 @result{} 20 | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
902 (lsh -5 2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
903 @result{} -20 ; = @r{11 1111 1111 1111 1111 1111 1110 1100} |
| 84091 | 904 (ash -5 2) |
| 905 @result{} -20 | |
| 906 @end group | |
| 907 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
908 (lsh 5 -2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
909 @result{} 1 ; = @r{00 0000 0000 0000 0000 0000 0000 0001} |
| 84091 | 910 @end group |
| 911 @group | |
| 912 (ash 5 -2) | |
| 913 @result{} 1 | |
| 914 @end group | |
| 915 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
916 (lsh -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
917 @result{} 268435454 ; = @r{00 0111 1111 1111 1111 1111 1111 1110} |
| 84091 | 918 @end group |
| 919 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
920 (ash -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
921 @result{} -2 ; = @r{11 1111 1111 1111 1111 1111 1111 1110} |
| 84091 | 922 @end group |
| 923 @end smallexample | |
| 924 @end defun | |
| 925 | |
| 926 @defun logand &rest ints-or-markers | |
| 927 This function returns the ``logical and'' of the arguments: the | |
| 928 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
| 929 set in all the arguments. (``Set'' means that the value of the bit is 1 | |
| 930 rather than 0.) | |
| 931 | |
| 932 For example, using 4-bit binary numbers, the ``logical and'' of 13 and | |
| 933 12 is 12: 1101 combined with 1100 produces 1100. | |
| 934 In both the binary numbers, the leftmost two bits are set (i.e., they | |
| 935 are 1's), so the leftmost two bits of the returned value are set. | |
| 936 However, for the rightmost two bits, each is zero in at least one of | |
| 937 the arguments, so the rightmost two bits of the returned value are 0's. | |
| 938 | |
| 939 @noindent | |
| 940 Therefore, | |
| 941 | |
| 942 @example | |
| 943 @group | |
| 944 (logand 13 12) | |
| 945 @result{} 12 | |
| 946 @end group | |
| 947 @end example | |
| 948 | |
| 949 If @code{logand} is not passed any argument, it returns a value of | |
| 950 @minus{}1. This number is an identity element for @code{logand} | |
| 951 because its binary representation consists entirely of ones. If | |
| 952 @code{logand} is passed just one argument, it returns that argument. | |
| 953 | |
| 954 @smallexample | |
| 955 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
956 ; @r{ 30-bit binary values} |
| 84091 | 957 |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
958 (logand 14 13) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
959 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
960 @result{} 12 ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
| 84091 | 961 @end group |
| 962 | |
| 963 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
964 (logand 14 13 4) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
965 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
966 ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
967 @result{} 4 ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100} |
| 84091 | 968 @end group |
| 969 | |
| 970 @group | |
| 971 (logand) | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
972 @result{} -1 ; -1 = @r{11 1111 1111 1111 1111 1111 1111 1111} |
| 84091 | 973 @end group |
| 974 @end smallexample | |
| 975 @end defun | |
| 976 | |
| 977 @defun logior &rest ints-or-markers | |
| 978 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit | |
| 979 is set in the result if, and only if, the @var{n}th bit is set in at least | |
| 980 one of the arguments. If there are no arguments, the result is zero, | |
| 981 which is an identity element for this operation. If @code{logior} is | |
| 982 passed just one argument, it returns that argument. | |
| 983 | |
| 984 @smallexample | |
| 985 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
986 ; @r{ 30-bit binary values} |
| 84091 | 987 |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
988 (logior 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
989 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
990 @result{} 13 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101} |
| 84091 | 991 @end group |
| 992 | |
| 993 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
994 (logior 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
995 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
996 ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
997 @result{} 15 ; 15 = @r{00 0000 0000 0000 0000 0000 0000 1111} |
| 84091 | 998 @end group |
| 999 @end smallexample | |
| 1000 @end defun | |
| 1001 | |
| 1002 @defun logxor &rest ints-or-markers | |
| 1003 This function returns the ``exclusive or'' of its arguments: the | |
| 1004 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
| 1005 set in an odd number of the arguments. If there are no arguments, the | |
| 1006 result is 0, which is an identity element for this operation. If | |
| 1007 @code{logxor} is passed just one argument, it returns that argument. | |
| 1008 | |
| 1009 @smallexample | |
| 1010 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1011 ; @r{ 30-bit binary values} |
| 84091 | 1012 |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1013 (logxor 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1014 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1015 @result{} 9 ; 9 = @r{00 0000 0000 0000 0000 0000 0000 1001} |
| 84091 | 1016 @end group |
| 1017 | |
| 1018 @group | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1019 (logxor 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1020 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1021 ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111} |
|
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1022 @result{} 14 ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110} |
| 84091 | 1023 @end group |
| 1024 @end smallexample | |
| 1025 @end defun | |
| 1026 | |
| 1027 @defun lognot integer | |
| 1028 This function returns the logical complement of its argument: the @var{n}th | |
| 1029 bit is one in the result if, and only if, the @var{n}th bit is zero in | |
| 1030 @var{integer}, and vice-versa. | |
| 1031 | |
| 1032 @example | |
| 1033 (lognot 5) | |
| 1034 @result{} -6 | |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1035 ;; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
| 84091 | 1036 ;; @r{becomes} |
|
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1037 ;; -6 = @r{11 1111 1111 1111 1111 1111 1111 1010} |
| 84091 | 1038 @end example |
| 1039 @end defun | |
| 1040 | |
| 1041 @node Math Functions | |
| 1042 @section Standard Mathematical Functions | |
| 1043 @cindex transcendental functions | |
| 1044 @cindex mathematical functions | |
| 1045 @cindex floating-point functions | |
| 1046 | |
| 1047 These mathematical functions allow integers as well as floating point | |
| 1048 numbers as arguments. | |
| 1049 | |
| 1050 @defun sin arg | |
| 1051 @defunx cos arg | |
| 1052 @defunx tan arg | |
| 1053 These are the ordinary trigonometric functions, with argument measured | |
| 1054 in radians. | |
| 1055 @end defun | |
| 1056 | |
| 1057 @defun asin arg | |
| 1058 The value of @code{(asin @var{arg})} is a number between | |
| 1059 @ifnottex | |
| 1060 @minus{}pi/2 | |
| 1061 @end ifnottex | |
| 1062 @tex | |
| 1063 @math{-\pi/2} | |
| 1064 @end tex | |
| 1065 and | |
| 1066 @ifnottex | |
| 1067 pi/2 | |
| 1068 @end ifnottex | |
| 1069 @tex | |
| 1070 @math{\pi/2} | |
| 1071 @end tex | |
| 1072 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of | |
| 1073 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
| 1074 @end defun | |
| 1075 | |
| 1076 @defun acos arg | |
| 1077 The value of @code{(acos @var{arg})} is a number between 0 and | |
| 1078 @ifnottex | |
| 1079 pi | |
| 1080 @end ifnottex | |
| 1081 @tex | |
| 1082 @math{\pi} | |
| 1083 @end tex | |
| 1084 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out | |
| 1085 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
| 1086 @end defun | |
| 1087 | |
| 1088 @defun atan y &optional x | |
| 1089 The value of @code{(atan @var{y})} is a number between | |
| 1090 @ifnottex | |
| 1091 @minus{}pi/2 | |
| 1092 @end ifnottex | |
| 1093 @tex | |
| 1094 @math{-\pi/2} | |
| 1095 @end tex | |
| 1096 and | |
| 1097 @ifnottex | |
| 1098 pi/2 | |
| 1099 @end ifnottex | |
| 1100 @tex | |
| 1101 @math{\pi/2} | |
| 1102 @end tex | |
| 1103 (exclusive) whose tangent is @var{y}. If the optional second | |
| 1104 argument @var{x} is given, the value of @code{(atan y x)} is the | |
| 1105 angle in radians between the vector @code{[@var{x}, @var{y}]} and the | |
| 1106 @code{X} axis. | |
| 1107 @end defun | |
| 1108 | |
| 1109 @defun exp arg | |
| 1110 This is the exponential function; it returns | |
| 1111 @tex | |
| 1112 @math{e} | |
| 1113 @end tex | |
| 1114 @ifnottex | |
| 1115 @i{e} | |
| 1116 @end ifnottex | |
| 1117 to the power @var{arg}. | |
| 1118 @tex | |
| 1119 @math{e} | |
| 1120 @end tex | |
| 1121 @ifnottex | |
| 1122 @i{e} | |
| 1123 @end ifnottex | |
| 1124 is a fundamental mathematical constant also called the base of natural | |
| 1125 logarithms. | |
| 1126 @end defun | |
| 1127 | |
| 1128 @defun log arg &optional base | |
| 1129 This function returns the logarithm of @var{arg}, with base @var{base}. | |
| 1130 If you don't specify @var{base}, the base | |
| 1131 @tex | |
| 1132 @math{e} | |
| 1133 @end tex | |
| 1134 @ifnottex | |
| 1135 @i{e} | |
| 1136 @end ifnottex | |
| 1137 is used. If @var{arg} is negative, it signals a @code{domain-error} | |
| 1138 error. | |
| 1139 @end defun | |
| 1140 | |
| 1141 @ignore | |
| 1142 @defun expm1 arg | |
| 1143 This function returns @code{(1- (exp @var{arg}))}, but it is more | |
| 1144 accurate than that when @var{arg} is negative and @code{(exp @var{arg})} | |
| 1145 is close to 1. | |
| 1146 @end defun | |
| 1147 | |
| 1148 @defun log1p arg | |
| 1149 This function returns @code{(log (1+ @var{arg}))}, but it is more | |
| 1150 accurate than that when @var{arg} is so small that adding 1 to it would | |
| 1151 lose accuracy. | |
| 1152 @end defun | |
| 1153 @end ignore | |
| 1154 | |
| 1155 @defun log10 arg | |
| 1156 This function returns the logarithm of @var{arg}, with base 10. If | |
| 1157 @var{arg} is negative, it signals a @code{domain-error} error. | |
| 1158 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least | |
| 1159 approximately. | |
| 1160 @end defun | |
| 1161 | |
| 1162 @defun expt x y | |
| 1163 This function returns @var{x} raised to power @var{y}. If both | |
| 1164 arguments are integers and @var{y} is positive, the result is an | |
| 1165 integer; in this case, overflow causes truncation, so watch out. | |
| 1166 @end defun | |
| 1167 | |
| 1168 @defun sqrt arg | |
| 1169 This returns the square root of @var{arg}. If @var{arg} is negative, | |
| 1170 it signals a @code{domain-error} error. | |
| 1171 @end defun | |
| 1172 | |
| 1173 @node Random Numbers | |
| 1174 @section Random Numbers | |
| 1175 @cindex random numbers | |
| 1176 | |
| 1177 A deterministic computer program cannot generate true random numbers. | |
| 1178 For most purposes, @dfn{pseudo-random numbers} suffice. A series of | |
| 1179 pseudo-random numbers is generated in a deterministic fashion. The | |
| 1180 numbers are not truly random, but they have certain properties that | |
| 1181 mimic a random series. For example, all possible values occur equally | |
| 1182 often in a pseudo-random series. | |
| 1183 | |
| 1184 In Emacs, pseudo-random numbers are generated from a ``seed'' number. | |
| 1185 Starting from any given seed, the @code{random} function always | |
| 1186 generates the same sequence of numbers. Emacs always starts with the | |
| 1187 same seed value, so the sequence of values of @code{random} is actually | |
| 1188 the same in each Emacs run! For example, in one operating system, the | |
| 1189 first call to @code{(random)} after you start Emacs always returns | |
| 1190 @minus{}1457731, and the second one always returns @minus{}7692030. This | |
| 1191 repeatability is helpful for debugging. | |
| 1192 | |
| 1193 If you want random numbers that don't always come out the same, execute | |
| 1194 @code{(random t)}. This chooses a new seed based on the current time of | |
| 1195 day and on Emacs's process @acronym{ID} number. | |
| 1196 | |
| 1197 @defun random &optional limit | |
| 1198 This function returns a pseudo-random integer. Repeated calls return a | |
| 1199 series of pseudo-random integers. | |
| 1200 | |
| 1201 If @var{limit} is a positive integer, the value is chosen to be | |
| 1202 nonnegative and less than @var{limit}. | |
| 1203 | |
| 1204 If @var{limit} is @code{t}, it means to choose a new seed based on the | |
| 1205 current time of day and on Emacs's process @acronym{ID} number. | |
| 1206 @c "Emacs'" is incorrect usage! | |
| 1207 | |
| 1208 On some machines, any integer representable in Lisp may be the result | |
| 1209 of @code{random}. On other machines, the result can never be larger | |
| 1210 than a certain maximum or less than a certain (negative) minimum. | |
| 1211 @end defun | |
| 1212 | |
| 1213 @ignore | |
| 1214 arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e | |
| 1215 @end ignore |
